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Abstract
This paper introduces an enhancement to traditional sampling-based planners, resulting in efficiency increases for high-
dimensional holonomic systems such as hyper-redundant manipulators, snake-like robots, and humanoids. Despite the
performance advantages of modern sampling-based motion planners, solving high dimensional planning problems in near
real-time remains a considerable challenge. The proposed enhancement to popular sampling-based planning algorithms
is aimed at circumventing the exponential dependence on dimensionality, by progressively exploring lower dimensional
volumes of the configuration space. Extensive experiments comparing the enhanced and traditional version of RRT, RRT-
Connect, and Bidirectional T-RRT on both a planar hyper-redundant manipulator and the Baxter humanoid robot show
significant acceleration, up to two orders of magnitude, on computing a solution. We also explore important implementation
issues in the sampling process and discuss the limitations of this method.

Keywords Motion and path planning · Redundant robots

1 Introduction

It is well known that the general motion planning problem is
PSPACE-complete [30] and that the runtime of even the best
known exact algorithm is exponential in the dimension of
the configuration space [4]. While sampling-based motion
planning algorithms such as rapidly exploring random trees
(RRTs) [22] and probabilistic roadmaps (PRMs) [16] are
able to avoid explicit reconstruction of the free configura-
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tion space, which Canny’s algorithm [4] relies upon, they
cannot avoid the underlying curse of dimensionality. Indeed,
Esposito’s Conditional Density Growth Model (CDGM)
for RRTs [8] predicts that the expected number of samples
required for an RRT to explore a certain volume fraction with
a given probability grows exponentially with the Configu-
ration Space dimensionality. For this reason, even though
modern sampling-based planners have exhibited dramatic
improvements over the original RRT and PRM techniques,
computing real time solutions for systems with 10 or more
degrees of freedom such as hyper-redundant manipulators,
snake-like robots, or humanoids, remains a significant chal-
lenge. Moreover, this challenge prohibits real time appli-
cations of such high dimensional systems even when only
simple kinematic constraints need to be satisfied, such as
producing trajectories that avoid obstacles. More complex
planning problems that require producing paths that sat-
isfy dynamic constraints, or guarantees optimality for some
criteria, such as energy efficiency, inertia reduction, etc,
are open problems that have yet to be addressed using
fast, real-time efficient, methods. Rapidly generating, even
highly sub-optimal, solutions would provide great utility for
planners such as InformedRRT* [9] and Batch Informed
Trees [10] that rely on initial paths to reduce the search
space, and to fast path optimization-based planners such
as TrajOpt [31]. In general, techniques such as the above
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require initial valid paths, in order to avoid excessive com-
putational costs for large search spaces, and/or addressing
local-minimum issues that are difficult to overcome.

This study addresses the path planning problem in high-
dimensional configuration spaces for holonomic systems.
The main contribution of this paper is introducing an
algorithmic enhancement that:

– Substantially accelerates the discovery of solutions for
systems with many DoFs, up to two orders of magnitude
compared to the original planners.

– Inherits the fundamental properties of the original
planners, such as completeness or the local connection
strategy.

– Is general enough to be applied to a large variety of
holonomic robotic systems.

– Is scalable and linear with no explicit limitations on the
number of dimensions.

– Requires no user-defined mapping functions, although
simple generic policies could be developed to provide
solutions even faster.

The proposed enhancement, rather than directly enabling
planning for systems subject to desired constraints, aims
to produce solutions that could be utilized quickly by path
optimization methods that require an initial path to produce
a desired solution such as CHOMP [29], STOMP [15],
or Trajopt [31] variants. More specifically, assuming a
feasible initial solution is provided fast enough —which is
typically the most time consuming part of the process—
path optimization techniques could be deployed to optimize
quickly the given path into a desired path that satisfies
dynamic or energy efficiency constrains in real-time.

Our approach is based on the observation that, for many
redundant systems, often only a subset of the kinematic abil-
ities are needed to complete a task [43]. Therefore, we
propose beginning the search in a lower dimensional sub-
space of the configuration space C in the hopes that a
simple solution will be found quickly. An important prop-

erty of these subspaces is that a solution lying entirely
inside these subspaces should be feasible, in the absence
of obstacles, so the initial and goal configurations must lie
inside every subspace. The proposed method, by construc-
tion, generates subspaces that satisfy this constraint. After
a certain number of samples are generated, if no solution is
found, we increase the dimension of the search subspace
and continue sampling in the larger subspace. We repeat
this process until a solution is found. In the worst case, the
search expands to include the full dimensional configura-
tion space — making the completeness properties identical
to the original version of the planer.

To evaluate this approach, we modified three well estab-
lished planners — RRT [22], RRT-Connect [20], and Bidi-
rectional T-RRT [13] — to produce RRT+, RRT+-Connect,
and Bidirectional T-RRT+, with the + symbol indicating
that the planners are enhanced using the idea described
above. All three planners were compared to the original
planners and to KPIECE [34] and STRIDE [11]. These plan-
ners were tested on a planar hyper-redundant arm, varying
from 12 to 30 DoFs, and on a simulated Baxter humanoid
robot, both shown in Figure 1, utilizing OMPL [36] and
the MoveIt! framework [7]. In many cases, our experi-
ments indicate that a solution is found much faster using the
proposed approach and the run time appears to be less sen-
sitive to the full dimension of the configuration space. For
example, our enhanced version of Bidirectional T-RRT [13]
found solutions for the Baxter robot 200 times faster than
the original planner, outperforming the other planners we
tested by a large margin. Perhaps surprisingly, the proposed
method does not seem to trade-off path length for speed; in
most cases, path quality was slightly improved.

The remainder of this paper is structured as follows.
Section 2 reviews other approaches for motion planning
for high-dimensional systems. Section 3 provides techni-
cal details of the enhancement, considering important issues
such as how the search subspaces are selected, how to gener-
ate the samples in those subspaces, and when to expand

Fig. 1 a A Baxter robot in a
heavily cluttered environment. b
A 50-DoF kinematic chain
moving amidst obstacles

(a) (b)
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the search dimension. Section 4 presents our experiments
applying the enhancement to three well established plan-
ners: RRT [22], RRT-Connect [20], and Bidirectional T-
RRT [13]. Finally, Section 5 concludes with lessons learned
and a discussion of future work.

2 Related work

The problem of motion planning has been proven to be
PSPACE-hard [30]. During the late 1990’s, sampling-based
methods were introduced and shown to be capable of solving
challenging motion planning problems, but without guaran-
tees of finding the solution in finite time [23]. The two most
prominent representatives of those algorithms are probabilis-
tic roadmaps (PRMs) by Kavraki et al. [16], which are useful
for multiple queries in stable environments, and RRTs by
LaValle [22], that are more suitable for single query applica-
tions. Two other variations of RRTs were used in this study:
RRT-Connect by Kuffner and LaValle [20], which extends
the tree more aggressively in each iteration, and T-RRT by
Jaillet et al. [13], which plans efficiently in costmaps.

Although the performance of these techniques can be
affected substantially by the number of degrees of freedom
of the system, some studies have used them successfully
for a variety of high dimensional robotic systems including
hyper-redundant arms, mobile manipulators, multi-robot
systems, and humanoid robots.

A method that uses PRMs and finds collision-free paths
for hyper-redundant arms was presented by Park et al. [27].
Other studies use RRTs for motion planning of redundant
manipulators, such as the work of Bertram et al. [3],
which solves the inverse kinematics in a novel way. Weghe
et al. [41] apply RRTs to redundant manipulators without
the need to solve the inverse kinematics of the system.
A study by Qian and Rahmani [28] combines RRTs and
inverse kinematics in a hybrid algorithm that drives the
expansion of RRTs by the Jacobian pseudo-inverse.

Other works have applied RRTs to mobile manipulators.
Vannoy et al. [38] propose an efficient and flexible
algorithm for operating in dynamic environments. The work
of Berenson et al. [2] provides an application of their
technique to a 10-DoF mobile manipulator.

For multi-robot systems, many sampling-based algorithms
have been proposed. The study of van den Berg and Over-
mars [37] uses a PRM and presents a prioritized technique
for motion planning of multiple robots. Other studies use
RRT-based algorithms such as the study by Carpin and Pag-
ello [5] which introduced the idea of having multiple paral-
lel RRTs for multi-robot systems. The work of Wagner [40]
plans for every robot individually and, if needed, coordi-
nates the motion in higher dimensional spaces. Other studies
propose efficient solutions using a single RRT [26, 33].

Sampling-based planning algorithms have been applied
to humanoid robots in Kuffner et al. [19, 21]. Other studies,
such as the work of Liu et al. [25], use RRTs for solving the
step selection problem for humanoid robots.

Regardless of the application, several studies explicitly
attempt to reduce the dependence on dimensionality in
sampling-based motion planning. Vernaza and Lee [39]
extract structural symmetries in order to reduce the apparent
dimension, providing near-optimal solutions but only for
known environments where the cost function is stable.
Yoshida [45] tries to sample in ways that exploit the
redundancy of a humanoid. Wells and Plaku [42] reduce
the dimensionality for 2-D hyper-redundant manipulators
by modeling the end-effector as a single mobile robot, and
the other links as trailers being pulled. While there are many
specialized approaches to reducing dimension, few of these
apply to general robot systems.

Planning in high dimensional spaces has also been done
with path optimization techniques such as CHOMP [29],
STOMP [15], and Trajopt [31]. These techniques can pro-
duce high quality paths and deal with narrow passages by
optimizing an initial trajectory that could be highly infeasible.
But often the optimization depends on the initial path and can
produce infeasible solutions due to local minima issues. Thus
these techniques very often are used as a post-processing
step on the result from a time consuming sampling-based
motion planner, whose overhead is the focus of our study.

Very recent works propose the application of machine
learning techniques to drive the tree growth or produce
heuristics so a solution will be found faster. For example,
the work of Zha et al. [46] proposed a framework based
on a Gaussian Mixture Model with reported 30% − 200%
acceleration on the computation speed, in comparison
to the original planners. On the other hand, Klamt and
Behnke [18] proposed an A* approach with a learned
heuristic produced from a Convolutional Neural Network to
plan paths efficiently for a high dimensional robot.

More relevant to our work are planners that attempt to
focus sampling in the relevant regions of the configuration
space. Gipson et al. developed STRIDE [11], which samples
non-uniformly with a bias toward unexplored areas of
the configuration space. Yershova et al. [44] proposed an
approach to focus sampling in the most relevant regions.
KPIECE [34] by Şucan and Kavraki uses random 2D and
3D projections to estimate the coverage of Configuration
Space C where the density of samples is lower, provided
a fast planner for high-dimensional configuration spaces.
Gochev et al. [12] proposed a motion planner that
decreases the effective dimensionality by recreating a
configuration space with locally adaptive dimensionality.
Kim et al. [17] present an RRT-based algorithm for
articulated robots that reduces the dimensionality of the
problem by projecting each sample into subspaces that
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are defined by a metric. Shkolnik and Tedrake [32] plan
for highly redundant manipulators in the low dimensional
task space with the use of Jacobian transpose and Voronoi
bias. As shown by Şucan and Kavraki [35], even random
projections of the configuration space can provide good
estimates for its coverage. Recent work of Chamzas et al. [6]
proposes a novel framework for experience-based sampling,
where it decomposes the workspace to local primitives
which are stored in a database and on the planning
phase corresponding local-planners are synthesized to bias
sampling. Lastly, the work of Bayazit et al. [1] where a PRM
was used to plan in subspaces of the configuration space,
creates paths that solve an easier problem than the original,
by shrinking the obstacles and then iteratively optimize the
solution until the solution becomes valid. Other examples
include [11, 12, 17, 37, 39, 40, 42, 45].

The observation that high-dimensional systems are often
overactuated has been very recently highlighted. Lee
et al. [24] were able to find efficient solutions by
simplifying the kinematic abilities of humanoids, while the
method proposed by Jia et al. [14] provided a method
for solving fast motion planning problems with dynamic
constraints by remapping the problem into a grid based
search.

This paper introduces the idea of iteratively searching in
lower-dimensional subspaces, and emphasizes the potential
of using such an approach for efficient motion planning on
arbitrary hyper-redundant systems. Unlike previous works,
this approach tries to find paths that are not only confined
entirely to a subspace but also in a subspace in which a
solution can exist, since the initial and goal configurations
are part of the subspace (Fig. 2). Contrary to the work of
Bayazit et al. [1], the approach searches in subspaces that
are strictly lower-dimensional, leading to faster computation
of the solution.

The main advantage of our approach, excluding the major
acceleration on the computation of a solution incompari-

son to the state-of-the-art, is that it can be adapted easily
to enhance many of the existing algorithms. The proposed
enhancement does not use approaches that do not scale well
with the dimensionality, such as grids, and more impor-
tantly, no user defined mapping functions are needed, although
if applied they could provide even better performance.

3Methodology

3.1 Problem Statement

The problem the proposed algorithm is solving is motion
planning, and a simple outline is shown in Fig. 3. Formally,
let C denote a configuration space with n degrees of
freedom, partitioned into free space Cfree and obstacle space
Cobs with C = Cfree ∪ Cobs. The obstacle space Cobs

is not explicitly represented, but instead can be queried
using collision checks on single configurations or short path
segments. Given initial and goal configurations qinit, qgoal ∈
Cfree, we would like to find a continuous path within Cfree

from qinit to qgoal.
For purposes of sampling, we assume that each degree of

freedom in C is parameterized as an interval subset of R, so
that

C =
[
c

(min)
1 , c

(max)
1

]
× · · · ×

[
c(min)
n , c(max)

n

]
⊆ R

n. (1)

Note that we treat C as Euclidean only in the context of
sampling; other operations such as distance calculations and
the generation of local path segments utilize identifications
on the boundary of C as appropriate for the topology. The
focus of this work is on holonomic systems. Transitions are
allowed from a state A∈ C to another state B∈ C as long as
no collisions occur.

Fig. 2 Sampling in one, two and three dimensions in C . Red lines indicate the boundaries of C , the yellow dots indicates qinit , and the green dots
indicate qgoal
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Fig. 3 An overview of the usage
of the proposed planners. The
initial and goal configurations
along with a map, shown on the
left, are the inputs that the
RRT+ planners utilize to
produce a collision free path,
shown on the right

Algorithm 1: RRT+.
Input : A configuration space C , an initial

configuration qinit, and a goal configuration
qgoal.

Output: RRT graph G

1 Csub ← 1-d subspace of C , through qinit and qgoal

2 G.init(qinit )
3 while True do
4 qrand ← sample drawn from Csub

5 qnear ←NearestVertex(qrand, G)

6 qnew ←NewConf(qnear, qrand)

7 G.AddVertex(qnew)
8 G.AddEdge(qnear, qnew)
9 if done searching Csub then
10 if dim(Csub) < dim(C ) then
11 Expand Csub by one dimension.
12 else
13 return G

14 end
15 end
16 end

3.2 Planning in Subspaces

The proposed method is based on searching for a solution in
lower dimensional subspaces of C , in expectation that such

a path might be found faster than searching in the entirety
of C . The underlying idea is to exploit the redundancy of
each system for each problem. To achieve this, the algorithm
starts searching in the unique linear 1-dimensional subspace
of C that contains qinit and qgoal. If this search fails, the
planner expands its search subspace by one dimension. This
process continues iteratively until the planner finds a path,
or until it searches in all of C . In each subsearch, the tree
structure created in lower dimensions is kept and expanded
in subsequent stages.

Algorithm 1 summarizes the general approach as applied
to RRT. Lines 2 through 8 are encapsulating the typical
RRT algorithm [22]. The rest are showing the proposed
modifications, with emphasis on line 4, which calls the
novel sampler. These enhancements are implementing the
following behavior: The planner starts optimistically by
searching in one dimension, along the line passing through
qinit and qgoal. If this search fails to find a path—a certainty,
unless there are no obstacles between qinit and qgoal—the
search expands to a planar subspace that includes qinit and
qgoal, then to a 3D flat,1 and so on until, in the worst case,
the algorithm eventually searches all of C ; see Fig. 2.

The description in Algorithm 1 leaves three important
elements unspecified. First, the algorithm needs a method
for selecting and representing the subspace Csub (Lines 1
and 11). Second, a method is required for sampling from
this subspace (Line 4). Third, the conditions that must be

1We use the term flat to refer to a subset of R
n congruent to some

lower-dimensional Euclidean space.
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met before moving to the next subsearch must be defined
(Line 9). The choices explored in this study are described in
the next sections.

It is worth noticing that the enhanced planners inherit
the transition method of the original planners (Lines 6 and
8), since only the sampling stage is altered. Thus the collision
checking and the transition functions are also inherited directly
from the original planners, and the proposed enhancement
does not effect those elements in any way.

3.3 Representing and Sampling from Subspaces

The central idea is to search for solutions in subspaces of pro-
gressively higher dimensions. The primary constraint on
these subspaces is that they must contain both qinit and qgoal.
Subspaces that violate this constraint cannot, of course,
contain a path connecting qinit to qgoal. In general, the algo-
rithm’s selections for Csub should ideally be directed by the
likelihood that a solution will exist fully within Csub. How-
ever, it is not clear how this likelihood should be computed.
Instead, we consider a simple random technique that is quite
effective, especially for highly-redundant systems.

The choice that we investigate in this paper—one that
trades generality for simplicity— is the prioritized release of
the degrees of freedom. The idea is that initially all the DoFs
will be constrained to vary linearly together, so that the
available subspace Csub is the single line connecting qinit

to qgoal. Each time the search is ready to expand to a higher
dimensional subspace, one DoF is chosen to be released. For
the released DoFs, instead of enforcing the above-mentioned
linear constraints, they take values from their range, inde-
pendently from the other DoFs. More formally, given a set
Pcon ⊆ {1, . . . , n} of DoFs to be constrained, we can form
Csub by constraining the DoFs in Pcon to form a line passing
from qinit and qgoal and allowing the remaining DoF to vary
freely. In each step, one randomly-selected DoF from Pcon

is removed, thus increasing the dimensionality of Csub.
Next, the algorithm requires a technique for drawing

samples from Csub. The sampling uses a very efficient linear
time method that initially generates a sample within C along
the line between qinit and qgoal by selecting a random scalar
r and applying:

q
(i)
rand = (q

(i)
goal − q

(i)
init)r + q

(i)
init. (2)

The algorithm then modifies qrand by inserting, for each
DoF not in Pcon, a different random value within the range
for that dimension; see Algorithm 2. More specifically, the
sampler starts by having all the DoFs constrained, thus a
random sample is generated along line L, and no value is
modified in the loop that follows. When a DoF has been
removed from Pcon, then a random sample is selected on
the 1-D line L, but the corresponding value of the released
DoF is altered with a random value from its entire range.

Thus, the sample will be drawn from a 2-D plane extended
by the corresponding basis vector of that dimension. The
process continues by releasing an additional DoF at every
iteration, until a solution is found or all DoFs are released
and planning proceeds on the complete configuration space,
as with the original planner.

To ensure that the samples along the line L between
qinit and qgoal remain within C , we compute rmin and rmax

using Algorithm 3 and select a scalar r randomly from
the interval [rmin, rmax]. The ComputeBoundaryValues
function calculates the line passing from qinit and qgoal (lines
1 and 2), finds the intersections of the line with all the
different c

(min)
i and c

(max)
i flats (lines 3 through 5), and

returns the limits rmin and rmax (line 16). When r takes the
value rmin or rmax then the resulting sample is one of the
two intersection points of the line and the boundaries of C
(lines 6 through 12). The ComputeBoundaryValues function
is called only once before the planning loop.

The prioritized method provides an efficient and easy
way to sample from projections of arbitrary dimensionality,
while, as stated before, it provides valuable understanding
that may be utilized while developing new prioritization
policies for each robotic system.

Algorithm 2: Prioritized sampler.
Input : Initial configuration qinit, goal configuration

qgoal, set of constrained DoFs Pcon, boundaries
of the random number r rmin, rmax .

Output: Sample configuration q

1 q ← random point in C along line L from qinit to qgoal

with rmin and rmax

2 for i ∈ 1, . . . , n do
3 if i /∈ Pcon then
4 q[i] ← Random(0,

1)∗(c
(max)
i − c

(min)
i ) + c

(min)
i

5 end
6 end
7 return q

3.4 Terminating the subsearches

The only remaining detail to be discussed is how long the
search in each subspace should continue. A set of timeouts
{t1, t2, . . . , tn} is generated in which ti corresponds to the
amount of time spent in the ith iteration. Ideally, the planner
should stop searching in subspaces that seem unlikely to pro-
vide a solution. For simplicity, in this paper we precompute
the timeouts by assuming that the ti follows a geometric pro-
gression. The idea is to exponentially increase the number
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Algorithm 3: ComputeBoundaryValues.
Input : Initial configuration qinit , goal configuration

qgoal , dimensionality of configuration space n,
limits of configuration space c(min), c(max).

Output: Minimum value of scalar rmin, maximum
value of scalar rmax

1 D ← qgoal − qinit

2 L = Dt + qinit

3 for i ← 1 to n do
4 for c in {c(min)

i , c
(max)
i } do

5 Find the intersection p = Dtp+qinit of L and c

6 if p ∈ C then
7 Find tp so p = Dtp + qinit

8 if (tp ≤ 0) then
9 rmin ← tp
10 else
11 rmax ← tp
12 end
13 end
14 end
15 end
16 return rmin, rmax .

of samples in each successive subsearch, acknowledging the
need for more samples in higher dimensions.

The proposed approach uses two different parameters
specified by the user. The first parameter T is the timeout
for the entire algorithm. The second parameter α > 1 is
a factor describing a constant ratio of the runtime between
successive subsearches. The total time T available to the
algorithm can be expressed in terms of α and a base time t0:

T =
n∑

i=1

t0α
i . (3)

Solving for t0 we obtain:

t0 = α − 1

α(αn − 1)
T . (4)

Using this t0 every ti can be computed as:

ti = αti−1. (5)

In this study, good performance was achieved when α

took a value between 1 and 2 and T was scaled linearly
with the dimensions of the configuration space. Moreover,
in the experiments it is shown that the T parameter does not
negatively affect the performance beyond a certain value. If
the T value is too small, the search in the lower subspaces
terminates early and the value of the proposed enhancement
is reduced, since the original algorithm’s sampling in the
entire C is applied.

4 Experiments

For the experiments three new planners were developed
using the OMPL framework [36]. These planners work by
applying the proposed technique to three RRT variants:
(1) RRT [22] with default goal bias of 0.05, (2) RRT-
Connect [20], and (3) the BiT-RRT [13] by assuming a
uniform costmap. The BiT-RRT is intended to test the effect
of our method on a powerful costmap planner.

4.1 Experiments with a 2D hyper-redundant
manipulator

In order to test the ability of the new planners to adapt
to different problems, the prioritization of the degrees
of freedom was chosen randomly for each run. We
demonstrate that, given enough redundancy, even a random
prioritization provides results much faster (up to two orders
of magnitude). A computer with 6th Generation Intel Core
i7-6500U Processor (4MB Cache, up to 3.10 GHz) and
16GB of DDR3L (1600MHz) RAM was used.

OMPL’s standard example of a 2D hyper-redundant
manipulator, created for STRIDE [11], was used in order to
test and compare the enhanced planners in a standard way.
Two different environments were tested 100 times each for a

Fig. 4 The two different environments, called Random Cluttered and
Horn [11]. In (a) and (c) the two planning problems are presented. The
red chain indicates the initial configuration (qinit) and the green chain

represents the goal configuration (qgoal). In (b) and (d), solutions for
the two environments, produced by RRT+-Connect, are shown using a
random color-palette
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(a) (b)

Fig. 5 The average (a) and the median (b) time for the Random Cluttered environment

kinematic chain with varying degrees of freedom (between
12 to 20): A Cluttered Random environment and a Horn
environment; see Fig. 4. The initial and goal configurations
were the same as shown in Fig. 4, so a qualitative comparison
in problems with different redundancies could be done.

In all cases, the enhanced versions of each planner were
faster and in most cases significantly faster than the original
ones. The average and the median times for the Random
Cluttered environment are presented in Fig. 5, and in Fig. 6
the same for the Horn environment. As can be seen, as the
dimensions of the configuration space increase the proposed
enhancement outperforms the original algorithm (lower is
better).

The BiT-RRT+ not only outperformed the BiT-RRT
by a wide margin but also outperformed all the other
planners using uniform sampling. Additionally, it provided
competitive results for robust planners with biased sampling
such as KPIECE [34] and STRIDE [11], which as expected
perform much better in less redundant environments.
Interestingly, for each problem, the single fastest solution
across all trials was generated by BiT-RRT+. This suggests
that a good choice of prioritization may give results faster in
a consistent way.

Additional experiments with the fastest planners were
performed by varying the number of degrees of freedom
between 12 and 30 for the Cluttered environment. The
performance of the BiT-RRT+ in Fig. 7 demonstrated
superior performance in increased dimensionality. Also
the BiT-RRT+ provided the fastest results among all
the planners. Even with random prioritization only after
the 29 dimensions due to insufficient prioritizations the
median run-time of BiT-RRT+ becomes slitghly larger than
KPIECE and STRIDE.

As shown in Fig. 8, our method does not significantly
affect the path quality as measured by path length.

We also demonstrate that the performance of the planners
is relatively insensitive to T across a wide range, as shown
in Fig. 9. In order to study the sensitivity by including also
the outliers, T was used for Eq. 4, and in case a solution
was not found in T time, the planners continued sampling
uniformly in C until a solution was found. Although a good
tuning may positively affect the efficiency, no clear trend
is observed on the efficiency of the enhanced planner as a
function of T .

Lastly, we demonstrated further the capability of the
enhancement to solve very challenging problems with

(a) (b)

Fig. 6 The average (a) and the median (b) time for the Horn environment
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Fig. 7 Comparison of the median time for the Cluttered Random
environment from 12 to 30 dimensions of BiT-RRT and BiT-RRT+,
KPIECE and STRIDE. Interestingly, BiT-RRT+ is more than 200
times faster than BiT-RRT for 30 DoF

many dimensions in real-time, by simply using random
prioritizations. BiT-RRT+ was benchmarked along with
KPIECE [34] and STRIDE [11] on a 50-DoF manipulator in
the Cluttered environment (Fig. 1b) with a small time-out of
only 1 second. As shown in the results (Table 1) BiT-RRT+
is twice as effective for solving fast problems of such high-
dimensionality, with a shorter median time than the other
two state-of-art techniques, illustrating the potential of the
method on generating paths for real-time applications. Note
that the original algorithm, BiT-RRT, is not reported, since
it was not able to successfully produce any solution within
the given time-out.

4.2 Experiments with Baxter

Experiments are presented for the Baxter humanoid robot
(Fig. 1) with 14 degrees of freedom using the OMPL [36]
and MoveIt! framework [7] with an Intel i7-7700 8-core
processor (3.6GHz), and 32 GiB RAM.

Given knowledge of the system, instead of choosing the
prioritizations randomly, a generic task independent policy

Fig. 8 The average path length for the Horn environment after the
standard path-simplification method of OMPL

Fig. 9 Sensitivity to T from 0 to 10000 with step 500, given α = 1.6
for 200 runs per value of RRT+-Connect in the Random Cluttered
environment for 15 degrees of freedom

was used to show that even naive policies can eliminate
the outliers observed in the earlier experiments and lead to
superior performance. The policy was giving priority to the
joints closer to the base.

We tested the enhanced planners in a cluttered
workspace, which consisted by a table and four parallel
pillars. As shown in Fig. 10, Baxter starts with the manip-
ulators in the relaxed position below the table and the goal
is to reach the configuration that both arms fit between
the pillars. Moreover, in order to make the problem more
challenging for the enhanced planners, one of the manipu-
lators should end up above the other, reducing even more
the redundancy of the problem and forcing our planners
to explore subspaces with high dimensionality. The RRT+,
RRT+-Connect, BiT-RRT+ were compared with their orig-
inal versions, and also with KPIECE and a bidirectional
version of KPIECE provided in OMPL, called BiKPIECE,
for 100 trials. A timeout of 60 seconds was used for each
run.

As shown in Fig. 11, each enhanced planner outper-
formed the corresponding non-enhanced planner. In particu-
lar, RRT+-Connect and BiTRRT+ provided solutions much
faster than BiKPIECE and KPIECE. Non-bidirectional

Table 1 Success rate, average and median of 100 trials for the 50-
DoF kinematic chain, with a time-out of 1 second. In bold the highest
success rate and the lowest median time

Success Average Median

rate (%) (s) (s)

BiT-RRT+ 66 0.29±0.25 0.44

KPIECE 34 0.19±0.26 0.65

STRIDE 39 0.24±0.27 0.58

BiT-RRT+ is close to twice more successful than KPIECE [34] and
1.7 times more successful than STRIDE [11], with shorter median
computation time for the solution
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Fig. 10 The initial a and goal c configuration, along with the path (b) used in the experiments with the Baxter. The table is indicated with red, and
the four pillars are indicated with blue

planners had difficulty finding a solution, showing the diffi-
culty of the problem close to the goal region. The enhanced
planners, even when they were failing in the case of RRT+,
produced solutions very quickly (in less than 5 seconds)
showing the advantage of sampling in lower-dimensional
subspaces. Similarly to the experiments presented in the
previous section, the fastest planner among all was the
BiTRRT+. Most of the solutions from RRT+- were found
in an 8-dimensional subspace, and from RRT+-Connect and
BiTRRT+ in a 6-dimensional subspace.

5 Conclusion

We proposed a novel method for accelerating motion plan-
ning in high dimensional configuration spaces by sampling
in subspaces of progressively increasing dimension. The
method provides, on average, solutions up to two orders of
magnitude than the original RRT-based methods without a
negative effect on the path quality.

The approach is general enough to be applied to a broad
variety of motion planning problems. For example, our

(a) (b)

(c) (d)

Fig. 11 The histograms comparing the enhanced planners, with the
original ones (a-b-c) along with the histograms of KPIECE and BiK-
PIECE (d). The red line at 60 seconds indicates the Timeout, and the

results after that line should be considered failures. The timeout was
chosen to facilitate the large number of tests
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experiments show potential for planning with costmaps via
an adaptation of the bidirectional T-RRT. The enhanced
planners are also readily adapted, by customizing the
subspace selection technique, to individual problems. The
study clearly shows that such methods have potential for
rapidly solving seemingly difficult problems. One possible
avenue for future research would be to utilize these kinds
of planners for the initial step of InformedRRT* [9],
Batch Informed Trees [10] or Trajopt [31], in order to
reduce the search space faster, extending the applicability
of such optimal planning techniques to systems of higher
dimensionality.

Future work will target a number of important questions.
First, it would be very interesting to find an efficient
way to choose subspaces that are more likely to contain
solutions. Second, it is important to provide a general way
to identify when a new iteration should begin, using a metric
of the expansion of the tree, and eliminating the α and T

parameters. Moreover, by using the previous metric, it is
possible to identify when the tree overcame a difficult area
and then reduce the dimensionality of the search, in order to
accelerate the results further. For both of the above problems
discrete methods such as the one of Şucan and Kavraki [35]
should also be considered.

Currently, there are two planners in OMPL that in some
cases outperform the RRT+ planners in our experiments:
KPIECE which uses random 2D or 3D projections to esti-
mate the coverage efficiently and STRIDE which samples
non-uniformly with a bias to narrow spaces. Although, we
show that this is not the case for very high dimensional
problems that are demanding a solution in a timely manner,
there are two different ways of enhancing those planners
with the proposed method. Our study can extend the first
planner to sample strictly in subspaces of C and use 2D, 3D
or 4D projections to estimate the coverage, and the second
planner can be used with the enhancement to accelerate the
solutions in the lower dimensional subspaces where narrow
passages are expected to be common. The integration of the
ideas underlying the proposed method with those planners
to accelerate the results is left for future work.

Lastly, we plan to explore the ability of the method
to efficiently produce paths that satisfy some natural
constraints of each system. Since the subspaces are defined
only by simple constraints between the DoFs, subspaces
that satisfy some dynamic constraints can be explored by
defining dynamic constraints between the different DoFs.
Similarly, the ability of the method to find alternative
solutions by avoiding exploring non-desired areas shows
some potential.
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