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Abstract—This paper addresses the problem of the coverage
path planning in a 3D environment for surveying underwater
structures. We propose to use the navigation strategy that a
human diver will execute when circumnavigating around a region
of interest, in particular when collecting data from a shipwreck.
In contrast to the previous methods in the literature, we are
aiming to perform coverage in completely unknown environment
with some initial prior information. Our proposed method uses
convolutional neural networks to learn the control commands
based on the visual input. Preliminary results and a detailed
overview of the proposed method are discussed.

Index Terms—underwater navigation, path planning, coverage,
autonomous system

I. INTRODUCTION

When considering the coverage problem in an underwater

environment the main challenge that arises is that we have to

deal with three dimensions; see 8. The coverage path planning

problem’s complexity exponentially increases when moving

from two to three dimensions. In addition, the underwater

environment presents novel challenges both from the coverage

and the navigation perspective. Dynamics of the water [1] and

visibility constraints contribute to instability, drifting, and error

in localization of an autonomous underwater vehicle (AUV);

for details on the challenges of underwater sensing please refer

to the comparison studies in [2]–[4].

Historical shipwrecks tell an important part of history and

at the same time have a special allure for most humans,

as exemplified by the plethora of movies and artworks of

the Titanic; see, e.g., [5] for the visual mapping of the

Titanic. Shipwrecks are also one of the top scuba diving

attractions all over the world. The historical shipwrecks are

deteriorating due to warm, salt water; human interference; and

extreme weather (frequent tropical storms). Reconstructing

accurate models of these sites will be extremely valuable not

only for the historical study of the shipwrecks, but also for

monitoring subsequent deterioration [6], [7]; see 2(a) for the

different floors of a shipwreck exposed after a partial collapse.

Currently, limited mapping efforts are performed by divers

who take measurements manually using a grid and measuring

tape, or using hand-held sensors [8] – a slow and sometimes

dangerous task; see 2(b) for a diver collecting data, manually,
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Fig. 1: Front Side View of a Shipwreck

to be used in training the navigation model. While acoustic

sensing (SONAR) is common, the resulting maps do not

contain the details vision can provide. The focus of this paper

is to enable the autonomous operation of light-weight robots

near underwater wrecks in order to collect data for creating

photo-realistic maps and volumetric 3-D models. Vision has

been utilized successfully to map underwater structures [9] or

even underwater caves [10].

In order to perform coverage of underwater structures

traditionally precise state estimation is required. But even with

ideal state estimation, performing a coverage in an unknown

environment exposes new and very different challenges. In

this work we present an approach of vision based coverage

that uses human diver knowledge on how to circumnavigate

an underwater structure, e.g. a shipwreck, to perform complete

coverage. In contrast to the works presented in the literature

on 3D coverage [11] this work is solely based on vision and

does not rely on state estimation neither requires a map of

the environment for the navigation. The paper is structured as

follows. First in Section II we will discuss the related work

and highlight challenges that each work is facing. Following

Section III the formal problem definition along with proposed

method are outlined. In Section IV the preliminary results
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(a) (b)

Fig. 2: (a) The different levels of the Stavronikita shipwreck, Barbados, after a partial collapse. (b) Diver collecting visual data

for training at the Pamir shipwreck, Barbados.

are reported. Finally Section V concludes with discussions on

lessons learned and how this work will progress.

II. RELATED WORK

Even though the 3D coverage problem is known to be

intractable, some approaches have been proposed and shown to

have a feasible solutions both with single and multiple robots

using octomaps [12], [13], some solutions have been used

for ensuring even distribution of spray paint in automotive

industry [14]. Another work has addressed also the coverage in

unknown environment using similar to frontier-based approach

[15].

Peng et al. [16] addressed the problem by representing an

area through well defined 2.5D features and thus reducing

the complexity of structure-dependency of the 3D coverage.

The coverage problem is designed for an aerial vehicle with

canonical field of view that can rotate around a fixed point

with three degrees of freedom.

Similar to Palomeras et el. [17] Bircher et al. [18] combine

the problem of covering an unknown environment with the

given structure by sampling random next-best views in the

area. It is an extension of their previous work [19] that builds

a tree of next-best views and selects the best branch which is

qualified by the size of unexplored area.

The coverage problem has been studied also for underwater

environments and has a significant environmental and archae-

ological importance. Number of works presented seabed and

underwater coverage path planning methods with Autonomous

Surface Vehicles and Autonomous Underwater Vehicles [20],

[21]. Behavior-based control of an underwater vehicle for

coral-reef inspection was proposed by [22]. The behavior

selection is implemented using both fuzzy logic and utility

fusion. The behaviors ensure collision avoidance, proper dis-

tance from the reef and rope following or target following

actions.

To ensure complete coverage without overlaps Galceran

et al. [23] suggest segmenting the environment based on

similar depths. Each of these segments then is considered

as an individual planning problem. The proposed algorithm

extends cellular decomposition performing 2.5D coverage by

traveling on constant depth from the surface. This work has

been extended to take also into account the state estimation

uncertainty and perform replanning [24]. These works rely on

the existence of prior information about the environment and

they operate on the 2.5D space.

When the environment is unknown Vidal et al. [25] propose

a next-best view approach but it is significantly constrained

by the certainty of the state estimation. To overcome the

complexity of 3D exploration, simplified formulation of the

problem is considered, such as 2D mapping of underwater

structure [26]. In this work authors use view planner and

frontier-based strategies. The environment is represented as

a quadtree occupancy map, and it is also used to generate

viewpoints for the exploration.

The 3D coverage also has been shown to have wide range of

applications for mapping historical artefacts and structures in

underwater environments [27]. Most of the presented works

either assume reliable localization or some type of prior

information about the environment. Work by Manderson et

al. [28] has been addressing this issue by proposing a vision

based navigation in an unknown environment for coral reef

coverage. The latter approach is limited by the simple structure

and the type of the training data. More recent work [29]

has incorporated path planning in conjunction with obstacle

avoidance and bias towards areas with corals.

III. PROPOSED APPROACH

We are assuming the robot is controlled without tether,

has six degrees of freedom from which controllable are yaw,

pitch, roll, up and down and forward. Robot’s location is given

by Euclidean coordinates {x, y, z, ψ, φ, ω}. There is no prior

information about the environment and it is deployed in a

3D-bounded area of interest E ⊂ R
3. The robot follows a

path π that will result in the sequence of V = {f1, f2, ..., f3}
stereo video frames, where fi is the i− th image frame. The

objective is to ensure that π is obstacle free and that the 3D

reconstruction resulted from V is covering the entire surface

of the E object.
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Fig. 3: The overview of Neural Network Architecture

(a) (b)

Fig. 4: The labeled data from (a) the gazebo simulation and (b) the underwater video data

To create a vision based navigation system we need to

have large dataset of different shipwrecks. We begin with

3D meshes of shipwrecks - the data consists of Gazebo

models of shipwrecks provided by the National Oceanic and

Atmospheric Administration (NOAA). In addition we have

generated test data from the coverage of the Stavronikita ship-

wreck in Barbados that we have collected by the underwater

Aqua2 robot [30] and a GoPro camera. The Aqua2 vehicle is

capable of autonomous operations [31] up to a depth of 30

meters. A diver was asked to label data based on the action

that they would take if they were to perform coverage around

a shipwreck. The possible values that diver selects are the

directions in a 2D image - the label window is illustrated in

Figure 4. In addition to this label we also use information

about the previous action to make better decision on the

direction - instead of continuing to circumnavigate the ship the

diver might turn back and cover the same line. The labeled data

is fed to an 18 layer residual network with similar architecture

to the one proposed by Manderson et al. [28] (see Figure

3).This network operates on each frame of the incoming video,

classifying each image into one of a possible 49 classes. Each

of these classes consists of a yaw/pitch command comprised

of two integers from -3 to 3. The predicted class is then

used as an input command to the Aqua robot. In training, the

network used a batch size of 32 and a dropout rate of 0.2 over

2048 epochs. A stochastic gradient descent method optimized

network with a learning rate of 0.01 and a categorical cross

entropy loss function. These variables were tuned until the

expected behavior could be observed. The output of the system

are direction commands that are converted to the yaw, pitch

and roll commands to control the Aqua2 robot.

IV. EXPERIMENTAL RESULTS

The experiments were performed using the Aqua2 simulator

in Gazebo. It emulates the real dynamics of an underwater

environment and allows control of the robot. The Aqua2 robot

used in simulation uses the motion from six flippers, each

independently actuated by an electric motor, to swim. It has 6

degrees of freedom, of which five are controllable. The robot’s

primary sensing modality is vision. It is equipped with three

iDS USB 3.0 UEye cameras: two facing forward and one in

the back. The front-facing cameras are used for navigation and

data collection.
The test results on training data showed about 80% accuracy

on prediction of the direction. As it can be seen from the

Accuracy per Epoch plot (Figure 6) the model is converging

after less than 300 epochs. In addition studying the samples

on which results are producing error it turned out that the

direction error is very small. The overall training data consists
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(a) (b)

Fig. 5: (a) Gazebo Model of a Schipwreck used for training, (b) AQUA robot navigating over shipwreck in Gazebo

(a) (b)

Fig. 6: (a) The wrong prediction data sample; (b) The accuracy per epoch plot of the proposed method.

of 20,000 data images extracted from three models of ship-

wrecks. The test data and cross validation data comprise each

the 10 percentage of the total data, with no overlaps.

The resulting predictions of direction changes are used to

control the robot. A sample execution of controller in Gazebo

proves the feasibility of the proposed concept that robot will

be able to navigate similar tot he diver around shipwreck.

Qualitative results also show that robot is able to get back

to the shipwreck when it looses track of it (see Figure 7).

V. CONCLUSIONS

With this work we proposed a new strategy for performing

navigation underwater with a complete coverage objective.

The method is based on the human expertise in performing

navigation to collect data from a structure. With reported

preliminary results of 80% accuracy achieved from the training

on the initial set of simulated and real underwater data, we

showed that this approach is feasible and has potential for

underwater navigation.

Fig. 7: Portion of a trajectory of robot in simulation produced

by prediction based controller

When working in the underwater domain we are limited by

the technical constraints of the autonomous platform more than
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Fig. 8: Data collection around the Pamir shipwreck, Barbados.

on the surface. The constraints of underwater vehicle include

but are not limited by the battery life, computational power and

cost. In order to be able to successfully execute the online

learning-based method, proposed above for 3D coverage,

our main experimental platform, the Aqua2 robot, must be

upgraded to include Jetson TX2 Module for computations.

New experiments and more data have to be collected with

Aqua2 to illustrate feasibility of the proposed system. An

alternative to AUV data collection is manual collection by

divers, using a sensor suite [32], where the human guides the

exploration. In addition, a 3D reconstruction of the underwater

structure should be generated using the proposed method and

state of the art 3D coverage method to show a qualitative

differences. And finally, another aspect of interest will be to

build a generalized prior map of shipwrecks and use that as

a guiding prior information to enhance the coverage in new

unknown environment.
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