
SM/VIO: Robust Underwater State Estimation

Switching Between Model-based and Visual Inertial Odometry

Bharat Joshia∗, Hunter Damronb∗, Sharmin Rahmana, and Ioannis Rekleitisa

Abstract— This paper addresses the robustness problem of
visual-inertial state estimation for underwater operations. Un-
derwater robots operating in a challenging environment are
required to know their pose at all times. All vision-based
localization schemes are prone to failure due to poor visibility
conditions, color loss, and lack of features. The proposed
approach utilizes a model of the robot’s kinematics together
with proprioceptive sensors to maintain the pose estimate
during visual-inertial odometry (VIO) failures. Furthermore,
the trajectories from successful VIO and the ones from the
model-driven odometry are integrated in a coherent set that
maintains a consistent pose at all times. Health-monitoring
tracks the VIO process ensuring timely switches between the
two estimators. Finally, loop closure is implemented on the
overall trajectory. The resulting framework is a robust estima-
tor switching between model-based and visual-inertial odometry
(SM/VIO). Experimental results from numerous deployments of
the Aqua2 vehicle demonstrate the robustness of our approach
over coral reefs and a shipwreck.

I. INTRODUCTION

This paper proposes a novel framework for solving the

robustness problem of state estimation underwater. Central to

any autonomous operation is the ability of the robot to know

where it is with respect to the environment, a task described

under the general term of state estimation. Over the years

many different approaches have been proposed; however,

state estimation underwater is a challenging problem that

still remains open. Vision provides rich semantic informa-

tion and through place recognition results in loop closures.

Unfortunately, as demonstrated in recent work on comparing

numerous open-source packages of visual and visual/inertial

state estimation [1], [2], in an underwater environment there

are frequent failures for a variety of reasons. In contrast to

above water scenarios, GPS-based localization is impossible.

In addition to the traditional difficulties of vision-based

localization, the underwater environment is prone to rapid

changes in lighting conditions, limited visibility, and loss of

contrast and color information with depth. Light scattering

from suspended plankton and other matter causes “snow

effects” and blurring, while the incident angle at which light

rays hit the surface of the water can change the visibility

at different times of the day [3]. Finally, as light travels

at increasing depths, different parts of its spectrum are

absorbed; red is the first color that is seen as black, and

eventually orange, yellow, green, and blue follow [4], [5]. In
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Fig. 1: Aqua2 AUV navigating over the Stavronikita ship-

wreck, Barbados. The front cameras are only seeing blue

water when approaching the side of the wreck.

addition to all the above underwater specific challenges, an

unknown environment often presents areas where there are

no visible landmarks. For example, in Fig. 1 an Aqua2 [6]

Autonomous Underwater Vehicle (AUV) mapping the deck

of a shipwreck reaches the starboard side where the front

cameras see only empty water with no features.

Visual inertial odometry (VIO) has been used for state

estimation in a multitude of environments such as indoor,

outdoor and even gained some traction in harsh environments

such as underwater [7]. While most VIO research often

focuses on improving accuracy, robustness is as critical

for autonomous operations. If VIO fails during deployment

the results could be catastrophic leading to vehicle loss.

From our early investigations [1], [2], many vision-based

approaches diverge, or outright fail, sometimes at random;

however, deploying a vehicle underwater in autonomous

mode requires that it will return to base, or a collection point,

during every deployment. It is very important for AUVs to

be able to keep track of their pose; even with diminished

accuracy; over the whole operation. We propose switching

between VIO and a model-based estimator addressing the

accuracy and robustness of state estimation by identifying

failure modes, generating robust predictors for estimator

divergence/failure, always producing a pose estimate.

The core of the proposed approach is a robust switch-

ing estimator framework, which always provides a realistic

estimate reflecting the true state of the vehicle. First of

all the health of VIO [8], [9] is monitored by tracking

the number of features detected, their spatial distribution,

their quality, and their temporal continuity. By utilizing the

measures described above when an estimator starts diverging,

before complete failure, an alternative estimator is introduced

based on sensor inputs robust to underwater environment

changes. For example, there is a model-based estimator [10],

[11] used for controlling the Aqua2 vehicles combining the



inertial and water depth signals together with the flipper

configuration and velocity [12], [13]; when the visual/inertial

input deteriorates, the proposed system switches to the

model-based estimator until the visual/inertial estimates are

valid again. The choice of switching-based loosely coupled

fusion of odometry estimates ensures flexibility in choosing

both the VIO and the conservative estimator in a modular

fashion. The two estimators switch back and forth based

on the health status of the VIO estimator. Finally, a loop-

closure framework ensures the consistent improvement of

the combined estimator. Our main contribution is a robust

switching-based state estimation framework termed Robust

Switching Model-based/Visual Inertial Odometry (SM/VIO)

capable of keeping track of an AUV even when VIO fails.

This allows the AUV to carry out underlying tasks such

as path planning, coverage, and performing motion patterns

maintaining a steady pose and relocalize when visiting

previous areas. Extensive experiments over different terrains

validate the contribution of the proposed robust switching es-

timator framework in maintaining a realistic pose of the AUV

at all times. In contrast, state-of-the-art VIO algorithms [7],

[14]–[17] result in a much higher error or even complete

failure.

II. RELATED WORK

In recent years a plethora of open source packages ad-

dressing the problem of vision-based state estimation has

appeared [8], [9], [16], [18]–[26]. Quattrini Li et al. [1] com-

pared several packages on a variety of datasets to measure the

performance in different environments. Extending the above

comparison with a focus on the underwater domain, Joshi et

al. [2] investigated the performance of VIO packages. The

above comparisons demonstrated that many packages require

special motions [19], or only work for a limited number of

images [27], [28], or are strictly offline [29]. Furthermore, in-

termittent failures were observed, the most common explana-

tion being the random nature of the RANSAC technique [30]

utilized by most of them. The underwater state estimation

approach SVIn2 by Rahman et al. [7] demonstrated improved

accuracy and robustness; however, it did not provide any

assurances for uninterrupted estimates, which is the focus of

this paper.

Utilizing an AUV to explore an underwater environment

has gained popularity over the years. Sonar and stereo esti-

mation for object modeling has been proposed in [31], [32].

Nornes et al. [33] acquired stereo images utilizing an ROV

off the coast of Trondheim Harbour, Norway. In [34] a deep-

water ROV is adopted to map, survey, sample, and excavate

a shipwreck area. Sedlazeck et al. [35], reconstructed a ship-

wreck in 3D by pre-processing images collected by an ROV

and applying a Structure from Motion based algorithm. The

images used for testing such an algorithm contained some

structure and a lot of background, where only water was

visible. Submerged structures were reconstructed in 3D [36].

Finally, recent work by Nisar et al. [37] proposed the use

of a model-based estimator to calculate external forces in

addition to the pose of aerial vehicles, ignoring failure modes

of VIO. In all previous work, when the state estimation failed

there was no recovery. In contrast, the proposed approach

of SM/VIO for underwater environments addresses the VIO

failure and the AUV can continue operations until reaching

another feature-rich area.

The use of switching estimators (also called observers)

has not been applied in many mobile robotics applications

and not, to our knowledge, to an AUV. Liu [38] presented a

generic approach for non-linear systems. Suzuki et al. [39]

utilized a switching observer to model ground properties

together with the robot’s kinematics. Manderson et al. [40]

utilized a model estimator in conjunction with Direct Sparse

Odometry [41] without monitoring the health, switching

estimators, and merging the two trajectories into one.

III. THE PROPOSED SYSTEM

a) Overview: The proposed approach (SM/VIO) uti-

lizes a model-based estimator termed primitive estimator

(PE), utilizing the water depth sensor, the IMU, and the

motor commands to propagate the state of the AUV forward

when the visual-inertial estimator fails; see Fig. 3(a) for

an estimate from PE. It is worth noting that the AUV is

using the same model to navigate, as such the PE estimate

of the lawnmower pattern in Fig. 3(a) follows the exact

pattern, however, does not correspond to the actual trajectory

which was affected by external forces (e.g. water current).

When VIO is consistent it is the preferred estimator having

higher accuracy due to the exteroceptive sensors (vision and

acoustic). Key to the proposed approach is a health monitor

process that tracks the performance of VIO over time and

informs a decision for switching between VIO and PE; see

Fig. 3(c) for the switching estimator trajectory, where the

switch points are marked green. When the VIO restarts

tracking successfully, the health monitor informs the switch

from the PE to the VIO. Throughout this process a consistent

pose is maintained. More specifically, when the VIO fails, the

PE is initialized with the last accurate pose from VIO, and

when the VIO restarts the last pose of PE is utilized. Finally,

during VIO controlled operations, loop closure is performed,

also optimizing the PE produced trajectories; the complete

framework is outlined in Fig. 2. Following the approach of

Joshi et al. [42], the stable 3D features are tracked and their

position is updated after every loop closure, thus resulting

into a consistent point cloud. Next we discuss the individual

components of SM/VIO.

The target vehicle is the Aqua2 AUV [6], an amphibious

hexapod robot. Underwater, Aqua2 utilizes the motion from

six flippers, each actuated independently by an electric

motor. The robot’s pose is described using the vector x =
[

W pT
I , W qT

I

]

, W pT
I = [x, y, z] represents the position of

the robot in the world frame, and W qT
I = [qw, qx, qy, qz]

is the quaternion representing the robot’s attitude. Aqua2

vehicles are equipped with three cameras, an IMU, and a

water pressure sensor.

b) Primitive Estimator: The primitive estimator main-

tains a local copy of the robot’s pose [W pT
I ,W qT

I ], which is

updated at a rate of 100Hz. The IMU provides an absolute



Fig. 2: Overview of the switching estimator.

measurement of W qT
I . The velocity of the robot is estimated

by the forward speed command vx and the heave (up/down)

command vz sent to the Aqua2 during field trails. These

commands are used by Aqua2 to perform motion primitives

and control the flipper motion. Since the same commands

are used for Aqua2 control and PE predictions, the resulting

PE trajectories will look perfectly aligned with the desired

motion primitives; this is a drawback of just using PE

prediction. At each time step t, the position is updated by

W pI,t+1
:= W pI,t + W RI [v

t
x, 0, v

t
z]

T∆tt,t+1 (1)

where W RI is the rotation matrix corresponding to W qI .

Because the water pressure sensor provides an absolute

measurement of depth, this measurement is used instead of

the above estimate for z. Moreover, the forward velocity

estimates are correct only up to scale depending on external

forces (e.g. ocean currents) and acceleration measurements

error accumulation. Hence, before integrating the PE trajec-

tory into the robust switching estimator, we scale the PE

trajectory using the scaling factor between the PE and the

VIO trajectory, as explained later.

c) SVIn2 Review: We use a VIO system that fuses

information from visual, inertial, water pressure (depth), and

acoustic (sonar) sensors presented in Rahman et al. [7]–

[9], termed SVIn2. More specifically, SVIn2 estimates the

state of the robot by minimizing a joint estimate of the

reprojection error and the IMU error, with the addition of

the sonar error and the water depth error. SVIn2 performs

non-linear optimization on sliding-window keyframes using

the reprojection error and the IMU error term formulation

similar to Leutenegger et al. [14]. The depth error term can

be calculated as the difference between the AUV’s position

along the z direction and the water depth measurement

provided by a pressure sensor.

Loop-closing and relocalization is achieved using the

binary bag-of-words place recognition module DBoW2 [43].

The loop closure module maintains a pose graph with odom-

etry edges between successive keyframes and a loop-closure

odometry edge is added between the current keyframe and

a loop closure candidate when they have enough descriptor

matches and pass PnP RANSAC-based geometric verifica-

tion. For a complete description, please refer to [7].

d) Health Monitoring: As described in earlier stud-

ies [1], [2], estimators often diverge or outright fail even

in conditions where they were working before; intermittent

failures are much more challenging in the field. Robustness

measures and divergence predictors are crucial in detecting

imminent failures. To monitor the health of the vision-based

state estimator, we employ the following criteria hierarchi-

cally; the most important criterion is checked first. The

VIO health is evaluated based on the following conditions

hierarchically and considered untrustworthy based on:

1) Keyframe detection. If a keyframe has not been de-

tected after kf wait time seconds the VIO has failed.

The only exception is when the system is stationary

(zero velocity).

2) The number of triangulated 3D keypoints that have

feature detections in the current keyframe is less than

a specified threshold, min kps. We found that min kps

between 10-20 worked well.

3) The number of feature detections per quadrant, in the

current keyframe, is less than a specified threshold,

min kps per quadrant. To account for situations where

there are high number of features detected robustly

in a small area; see Fig. 3(e-f) where the bottom

two quadrants contain all the features. The quadrant

criterion is applied only if the total number of feature

detections is less than 10×min kps per quadrant.

4) The ratio of new keypoints to the total keypoints is

more than 0.75. The newly triangulated points are

those that were not observable previously.

5) The ratio of keypoints with feature detector response

less than the average feature detector response in

the current keyframe to the total keypoints is more

than 0.85. The choice of a high threshold for the

ratio is motivated by the fact that hierarchically more

important criteria have already been satisfied. Hence,

this criterion has less importance overall.

Please note, the choice of the above parameters is flexible.

For instance, the minimum number of tracked keypoints

should be higher than the minimum number of points re-

quired for relative camera pose estimation using epipolar

geometry. Thus, these parameters should only be taken as

reference. During our experiments, we found out that chang-

ing the parameters slightly does not change the performance

of the switching estimator greatly and the parameters where

selected through experimental verification.
e) Integration of SVIn2 and Primitive Estimator

results: Utilizing the framework described in Rahman et

al. [8], [9] the graph SLAM formulation, based on the

Ceres package [44], is augmented to consider estimates

from multiple observers thus maintaining the history of the

estimates and enabling loop closures.
We denote the poses SVIn2 and PE as W Tsv and W Tpe,

respectively, representing them as homogeneous 4× 4 trans-

formation matrices. The goal of the integration process is

to provide a robust switching estimator pose W Tro which

matches W Tsv locally when SVIn2 is properly running, and

matches W Tpe locally when SVIn2 is reporting failure. To

find the scaling factor between SVIn2 and PE, we compute

the ratio of the two trajectory lengths when both estimators
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Fig. 3: First row, an overview example: (a) Trajectory according to the primitive estimator; PE believes the AUV performed

a near perfect lawnmower pattern. (b) Trajectory according to SVIn2 [9]; due to tracking loss the VIO is way off the actual

wreck. (c) Trajectory resulting from the proposed method; the switching estimator utilized the robust parts of VIO (in red)

switching to PE when tracking was lost (in blue). The stable 3D features detected are plotted as grey points. Second row,

characteristic images of the shipwreck: (d) the AUV is over the wreck seeing the deck; (e) the AUV is approaching the side

of the wreck, still able to localize, but the number of features decreases; (f) the AUV is at the edge of the wreck seeing

mostly blue water and the estimator switches from VIO to PE.

are tracking well. More specifically, we compute the relative

distance travelled as estimated by PE and SVIn2 between

successive keyframes at time t and t + 1 and compute the

scaling factor s as:

s =

∑

‖W R−1
sv,t(W Psv,t+1 − W Psv,t)‖

∑

‖W R−1
pr,t(W Ppr,t+1 − W Ppr,t)‖

(2)

The scaling factor keeps updating over time whenever

SVIn2 is tracking, to account for any changes in external

factors. For the sake of convenience, we assume that the

PE pose W Tpe is appropriately scaled by the scaling factor,

s, to match the SVIn2 scale. Initially, when SVIn2 starts

tracking, W Tsv is equivalent to W Tro. When SVIn2 fails,

we keep track of robust estimator pose W Tst
ro and primitive

estimator pose W Tst
pe at switching time, st. When PE is

working normally, we compute the relative displacement of

the current PE pose with respect to PE pose at the time of

switching by W Tst−1

pe ·W Tpe. This local displacement is then

applied to the robust estimator pose using Eq. 3 while making

sure that the robust estimator pose tracks the PE pose locally

during this time.

W Tro := W Tst
ro · W Tst−1

pe · W Tpe (3)

It should be noted that W Tst
ro · W Tst−1

pe remains constant

until SVIn2 starts tracking again.

Similarly, when switching from the primitive estimator

back to SVIn2, the robust estimator tracks the local displace-

ment from SVIn2 using Eq. 4 with W Tst
sv remaining constant

until next switch to PE occurs.

W Tro := W Tst
ro · W Tst−1

sv · W Tsv (4)

We make sure that the robust estimator tracks PE locally

when SVIn2 fails and tracks SVIn2 again when it recovers

as VIO is the preferred estimator maintaining robust uninter-

rupted pose estimate. As SVIn2 is capable of maintaining an

accurate estimate in the presence of brief failures of visual

tracking by relying on inertial data, it is not desirable to

switch between SVIn2 and PE back and forth frequently, as

this introduces additional noise. To reduce frequent switching

between estimators, we wait for a small number of successive

tracking failures to switch from SVIn2 to PE and vice-versa.

When the VIO frontend can not detect or track enough

keypoints to initialize a new keyframe, no keyframe infor-

mation is generated. In this case, we wait for the specified

time (set as a parameter) if we do not receive any keyframe

information from SVIn2 for kf wait time (generally set

between 1 to 3 secs), we switch to the primitive estimator.

Furthermore, we need to introduce these keyframes into the

pose graph differently than regular keyframes as they only

contain the odometry information from PE. These keyframes



(a) (b) (c)

Fig. 4: Three environments where the AUV was deployed (Barbados): (a) over a shipwreck performing a lawnmower pattern;

(b) over a mixed sand and coral area performing multiple squares; (c) over a coral reef performing a lawnmower pattern.

cannot be used for loop closure as they do not possess the

keyframe image, features, and the 3D keypoints (used for

geometric verification using PnP RANSAC) associated with

them. It is worth noting that even if the SVIn2 health status

is bad, we can use the keyframes originated from SVIn2 for

loop closure.

IV. EXPERIMENTS

a) Datasets: The Aqua2 AUV has been deployed in

a variety of challenging environments including shipwrecks,

see Fig. 4(a); areas with sand and coral heads, see Fig. 4(b);

and coral reefs, see Fig. 4(c). During each deployment,

Aqua2 performs predefined trajectory patterns while using

the odometry information from the PE. We have tested our

approach on the following datasets:

• lawnmower over shipwreck: The Aqua2 AUV per-

forming a lawnmower pattern over the Stavronikita

shipwreck, Barbados. During operations around ship-

wrecks, a common challenge is the lack of features

when the wreck is out of the field of view; for example,

while mapping the superstructure, the AUV can move

over the side of the wreck (see Fig. 3(e-f)), thus facing

the open water with no reference. Since VIO is not

able to track while facing open water, the AUV’s pose

cannot be estimated correctly without using the PE. We

obtain the ground truth trajectory for the section with

the shipwreck in view by using COLMAP [45], scale

enforced using the rig constraints.

• squares over coral reef: The Aqua2 AUV performed

square patterns over an area with sand and coral heads,

Barbados; see Fig. 4(b). During operations over coral

reefs, drop-offs present similar conditions as wrecks,

where the vehicle is facing blue water or a sandy

patch. In addition, patches of sand present feature-

impoverished areas where VIO fails.

• lawnmower over coral reef: The Aqua2 performed

a lawnmower pattern over a coral reef, Barbados; see

Fig. 4(c). During operations, the VIO was able to

track successfully the whole trajectory. This dataset

was later artificially degraded to simulate loss of vi-

sual tracking. Utilizing the consistent track produced

by VIO as ground truth, a quantitative study of the

switching estimator is presented. It’s worth mentioning

that COLMAP was not able to register images during

strips with fast rotation; hence not used for ground truth.

b) Trajectory Estimation: Trajectories were produced

with PE, SVIn2, and the proposed SM/VIO estimators.

Figure 5 presents the resulting trajectories for the three

datasets. In all cases the PE trajectory (blue dash-dotted

line) accurately traced the requested pattern as the primitive

estimator was also used to guide the robot. The VIO (SVIn2)

(red dash-dotted line) diverged when visual tracking failed.

Finally the proposed estimator SM/VIO (solid red and blue

line with green diamonds marking the switching of estima-

tors) tracked consistently the pose of the AUV.

The shipwreck lawnmower dataset presents a very chal-

lenging scenario, the AUV swims over the deck, VIO tracks

consistently the feature-rich clutter (Fig. 3(d)), then the AUV

approaches the sides of the wreck, the number of features

is reduced (Fig. 3(e)) until it goes over the side (Fig. 3(f))

and faces blue water. As the detected features are drastically

reduced the VIO continues forward, moving further away

from the true position. It is worth noting that several loop

closures kept the VIO estimate close enough to the wreck

structure but in the wrong area. The proposed framework

switched to the PE upon loss of visual tracking as can

be seen from the green diamond signifying the switch in

Fig. 5(a). COLMAP was able to register images in sections

with shipwreck in view.

In the reef square dataset the AUV performed three

squares over an area with some coral heads and a large

sandy patch. As can be seen from Fig. 4(b) and Fig. 5(b)

only one side of the square contains enough features for

VIO tracking; however, these features enabled repeated loop

closures. The primitive estimator over estimated the forward

velocity producing squares much larger than the actual

trajectory. The VIO upon loss of visual tracking failed (red

dash-dotted line). SM/VIO produced accurate trajectories

utilizing the loop closures. The top side of the square, where

VIO was operational produced consistent trajectories across

all squares. The last dataset is discussed next, presenting a

quantitative evaluation of the SM/VIO estimator.

c) Quantitative Analysis: The third dataset (lawn-

mower over a coral reef) produced VIO results without any

loss of tracking, albeit without any loop closures. The visual

input was artificially degraded (Gaussian blur with kernel

size 21 and standard deviation 11 was introduced on selected

images) randomly in order to generate controlled failures for
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Fig. 5: Resulting trajectories from three datasets. Each plot presents the PE trajectory, the SVIn2 trajectory, and the proposed

robust switching estimator (solid line with red the parts of VIO and blue the PE contributions, switching points are marked by

green points), approximate ground truth in (a) and (c) is plotted as a solid black line: (a) Stavronikita shipwreck, lawnmower

pattern. (b) Mixed sand and coral area, multiple squares. Please note that as the SVIn2 trajectory lost track it moved far away.

(c) Coral reef, lawnmower pattern. This dataset has no loop closures, however, SVIn2 maintained track over the complete

trajectory. The visual data were artificially degraded at random occasions to trigger the switch to PE.

the VIO. Fig. 5(c) presents such a scenario of three failures

of 30 seconds each. For this study, these failures lasted

for varying duration and a different number was introduced

each time. More specifically, as can be seen in Table I, we

introduced one, three, and five failures, in a trajectory of 314

seconds with a total length of 108.13 meters as estimated by

the successful SVIn2 estimator. Each scenario was run five

times, the average Root Mean Square Error (RMSE) and

standard deviation are reported. One failure of 60 seconds

was introduced resulting in average RMSE of 3.2 meters.

Three failures for 15, 30, and 45 seconds were introduced,

resulting on average around 3 meters. Finally, five failures of

20 seconds were introduced resulting on average of RMSE

4.37 meters. It is worth noting that in all cases the pure VIO

estimates diverged rapidly upon loss of visual tracking; see

Fig. 5(c) red dash-dotted line.

TABLE I: Quantitative analysis of robust switching estimator

based on root mean squared translation error. The table shows

mean and standard deviation of error over 5 runs.

dataset length mean rmse s.d.
(in meters) (in meters) (in meters)

reef lmw 1 60 108.13 3.21 0.47
reef lmw 3 15 108.13 3.21 0.61
reef lmw 3 30 108.13 3.01 0.58

reef lmw 3 45 108.13 3.56 0.32

reef lmw 5 20 108.13 4.37 0.90

d) Comparison with other VIO packages: The ship-

wreck lawnmower dataset was used to compare with well

known VIO packages [9], [14]–[16]. The ground truth is ob-

tained using COLMAP [45] which was able to track images

with shipwreck in view as it does not require continuous

tracking. We compared the performance of various VIO

algorithms with COLMAP baseline using root mean squared

average translation error (ATE) metric after se3 alignment.

As can be seen in II, the proposed estimator maintained a

pose estimate and exhibited the least RMSE, in contrast other

algorithms deviated after losing track. OpenVINS [16] was

not able to recover after losing track when the shipwreck is

out of view and has a very high error. It is worth noting that

all the VIO algorithms lose track when the robot approaches

the side of the wreck facing blue water.

TABLE II: Performance of popular open-source VIO pack-

ages on the wreck dataset. The root mean squared ATE

compared to COLMAP trajectory after se3 alignment.

VIO Algorithm Time to first Recovery? RMSE
track loss (in sec) (in m)

OpenVINS [16] 23.7 No ×
OKVIS [14] 23.4 Partial 5.199
VINS-Fusion [15] 23.6 Partial 53.189
SVIn2 [9] 23.4 Yes 1.438
SM/VIO N/A Yes 1.295

V. CONCLUSION

The presented estimator robustly tracked an AUV even

when traveling through blue water or over a featureless sandy

patch. The proposed system uses an Aqua2 vehicle [6] and

the SVIn2 [9] VIO approach; however, any AUV with a

well-understood motion model can be utilized together with

any accurate VIO package. Recent deep learning based

inertial odometry approaches [46]–[48] can also serve as

a conservative alternative estimator. An evaluation of visual

features for the underwater domain [49]–[51] will contribute

additional information to the VIO health monitor.
Future use of the proposed approach will be to combine

it with coral classification algorithms [52], [53] in order

to extract accurate coral counts over trajectories [54] and

models of the underlying reef geometry, and for mapping

underwater structures [55]. We are currently working on

extending the Aqua2 vehicle operations inside underwater

caves. The challenging lighting conditions in conjunction

with the extreme environment require the localization abili-

ties of the vehicle to be robust even when one of the sensors

fails temporarily.
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[35] A. Sedlazeck, K. Köser, and R. Koch, “3D reconstruction based
on underwater video from ROV Kiel 6000 considering underwater
imaging conditions,” in MTS/IEEE OCEANS, 2009, pp. 1–10.

[36] C. Beall, B. Lawrence, V. Ila, and F. Dellaert, “3d reconstruction of
underwater structures,” in Proc. IEEE/RSJ International Conference

on Intelligent Robots and Systems, Oct 2010, pp. 4418–4423.
[37] B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza, “Vimo: Simul-

taneous visual inertial model-based odometry and force estimation,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2785–2792,
2019.

[38] Y. Liu, “Switching observer design for uncertain nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 42, no. 12, pp. 1699–
1703, 1997.

[39] M. Suzuki, H. Fujimoto, and Y. Hori, “The simultaneous estima-
tion method of terrain parameter and vehicle dynamics variables
for agricultural vehicle,” in 2019 IEEE International Conference on

Mechatronics (ICM), vol. 1, 2019, pp. 596–601.
[40] T. Manderson, J. C. Gamboa, S. Wapnick, J.-F. Tremblay, F. Shkurti,

D. Meger, and G. Dudek, “Vision-based goal-conditioned policies for
underwater navigation in the presence of obstacles,” in Proceedings

of Robotics: Science and Systems, July 2020.
[41] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE

transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2017.

[42] B. Joshi, M. Xanthidis, S. Rahman, and I. Rekleitis, “High definition,
inexpensive, underwater mapping,” in IEEE International Conference

on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, p.
accepted.
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