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Abstract— In this paper we present a complete framework
for Underwater SLAM utilizing a single inexpensive sensor.
Over the recent years, imaging technology of action cameras
is producing stunning results even under the challenging
conditions of the underwater domain. The GoPro 9 camera
provides high definition video in synchronization with an
Inertial Measurement Unit (IMU) data stream encoded in
a single mp4 file. The visual inertial SLAM framework is
augmented to adjust the map after each loop closure. Data
collected at an artificial wreck of the coast of South Carolina
and in caverns and caves in Florida demonstrate the robustness
of the proposed approach in a variety of conditions.

I. INTRODUCTION

The underwater domain presents a special allure since

the early days of exploration [1]; coral reefs, shipwrecks,

and underwater caves all present unique views like nothing

most people see above water. Underwater exploration us-

ing acoustic sensors is well studied, however, the resulting

representations convey only limited information; in contrast

vision based mapping presents the most familiar representa-

tions [2]–[5]. Underwater is a very challenging environment

for cameras. The visibility is limited, sometimes objects after

a few meters disappear; color attenuation, colors disappear

with depth starting with red [6], [7]; floating particulates

generate blurriness; there is varying illumination resulting

from caustic patterns due to waves up to complete lack

of ambient light inside caves; and the reduced number of

features makes localization challenging.

Autonomous Underwater Vehicles (AUVs) and Remotely

Operated Vehicles (ROVs) range in cost from a few thousand

to hundreds of thousand of dollars. Furthermore, camera

technologies for these vehicles, unless at the higher end

of the spectrum provide images not of the highest quality;

one major challenge is the light has to pass from water to

the AUVs window, through air, then the lens of the camera

generating additional distortions. In the recent years so-called

action cameras and in particular the GoPro cameras have

produced exceptional imagery for a fraction of the cost.

The improvements in image quality though, were limited

by the single camera view which made estimation of scale
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Fig. 1: Collecting data in an underwater cavern, Ginnie Spring, FL,
USA. GoPro 9 camera is attached to the stereo-rig [15], lighting
from two Keldan lights [16].

near impossible. As shown in Joshi et al. [8] and Quattrini

Li et al. [9] monocular vision without inertial data has

very low accuracy. From the GoPro 5 black, the video

contains embedded inertial data at a rate of 200 Hz, without

synchronization information. Starting from GoPro 8, the

video contains inertial information along with necessary

timing information for camera IMU synchronization thus

making underwater state estimation feasible. In this paper

we tested some of the most promising open-source Visual

Inertial SLAM packages [10]–[14], in a variety of environ-

ments with very accurate results. Furthermore, the SVIn2

framework [10] is augmented with updating the 3D pose of

the detected visual features after loop closure producing a

consistent global map. The code is publicly available1.

Experiments conducted over an artificial reef (refuelling

barge wreck) off the coast of South Carolina; inside the

Devil System cave, FL; at the spring waters (open water)

of Troy Springs State Park, FL; and in the cavern of Ginnie

Springs, FL. In particular inside the Ginnie Springs cavern,

five fiducial markers were placed in different locations in

order to estimate the accuracy of the estimated trajectory.

These datasets are made publicly available together with

calibration data and basic scripts for evaluating ground truth2.

II. RELATED WORK

A stereo GoPro setup was used to map underwater

caves [17], however, this technology is no longer available,

and it is only recently that the IMU of the GoPro 9 allows

scale-accurate results from a single camera. GoPro cameras

have been studied in underwater settings [18], [19], and used,

due to the high quality imagery in a variety of underwater

tasks, for coral monitoring [19]–[22], underwater archaeol-

ogy [23], and seafloor reconstruction [24], [25].

1https://github.com/AutonomousFieldRoboticsLab/

gopro_ros
2https://afrl.cse.sc.edu/afrl/resources/datasets/



Wreck mapping has been studied using a variety of tech-

niques all around the world. Photogrammetry of manually

obtained images resulted in mosaics in Demesticha et al. [3],

or from an ROV, see Nornes et al. [26]. While the Arrows

EU project provides an overview of robotic technology

used [27]. Menna et al. [28] provide a comprehensive review

of techniques used. Mapping projects extend from Italy [29],

Spain [30], Canada [31], Qatar [32], up to the arctic [33].

With the most famous wreck explorations of the Titanic [2]

and the Antikythera [34] shipwrecks.

Coral reef mapping also utilizes vision. By creating spe-

cialized sensors [15], [35] or utilizing UAVs [36] there is a

need for Underwater SLAM [37]. Due to the deteriorating

health of the coral reefs, it is important to document the state

of the different reefs and to measure the rate of deterioration.

Of particular interest is to identify resilient species to assist

re-population efforts.

There are few datasets from underwater experiments [8],

[9], [38], however, obtaining ground truth is extremely

challenging. The Aqualoc dataset [38] used the trajectory

estimated using global optimization package Colmap [14] as

ground truth. This work will contribute a novel collection of

datasets, and in select cases a set of permanent landmarks

to act as ground truth. This dataset contains high defini-

tion/resolution images and inertial data at 200 Hz. The image

quality is far superior than existing datasets.

Mapping underwater caves is extremely challenging due

to the total lack of ambient light. Wakulla Springs cave

is one of the most well known and efforts to map it

include the Wakulla 2 project [39], [40] utilizing mainly

acoustic sensors, as was mapping a cenote [41]. Nocerino

et al. [42] proposed the use of multiple cameras on a ROV

for mapping caves, then use it to map caves in Sicily [43].

Malios et al. [44] proposed also a SLAM framework for

confined spaces. The works of Rahman et al. [10], [45]

has demonstrated accurate results over long trajectories in

a variety of settings. On this work we utilize a subset of

this work SVIn2 utilizing the initialization and loop closure

extension over OKVIS [46]. Furthermore, a framework for

denser reconstructions used the plethora of shadows in the

cave environment [47]. We have augmented this framework

to produce a consistent map, by updating the triangulated

features after every loop closure.

III. PROPOSED APPROACH

A. Sensor Setup

The GoPro 9 consists of a color camera, an IMU, and a

GPS. GPS does not work underwater; thus it was not used in

this work. However, GPS information can be fused with Vi-

sual Inertial Navigation Systems (VINS) during above-water

operations. For calibrating the camera intrinsic parameters

and the extrinsic parameters of the sensor setup, we use a

grid of AprilTags [48]. Table I presents the available sensors.

The GoPro 9 is equipped with Sony IMX677, a diag-

onal 7.85mm CMOS active pixel type image sensor with

approximately 23.64M active pixels. GoPro 9 can run at 60

Hz at the maximum resolution of 4K. The Sony IMX677

Sensor Type Rate Characteristics

Camera Sony IMX677 60 Hz max. 5599×4223, RGB color mosaic filters
IMU Bosch BMI260 200 Hz 3D Accelerometer & 3D Gyroscope
GPS UBlox UBX-M8030-CT 18 Hz 2 m CEP Accuracy

TABLE I: Overview of sensors in GoPro9 camera.

sensor has an inbuilt 12-bit A/D converter to shoot high-

speed and high-definition videos using horizontal and vertical

binning and subsampling readout. The sensor has on-chip

R, G, and B primary color mosaic filters for better color

capture. GoPro 9 has multiple settings for recording the

video, while many can be used there are certain modes

which are prohibitive to VIO operations due to the non-linear

transformation of the image as detailed in [49]. We found

that the SuperView mode generates non-linear distortions

that thwart calibration of the camera intrinsic parameters

during data collection. The videos were recorded at full

High Definition (HD) resolution of 1960×1080 with wide

lens setting: horizontal field-of-view (FOV) 118◦, vertical

FOV 69◦, and hypersmooth level set to off. Hypersmooth

levels control the electronic image stabilization that predicts

camera motion and compensates for it by cropping the view-

able image. Hypersmoothing can effectively crop up to 10%

of the image frame and the amount of cropping depends

on the amount of motion, rendering this mode extremely

challenging for VIO applications.

GoPro 9 also includes a Bosch BMI260 IMU equipped

with 16-bit 3-axis MEMS accelerometer and gyroscope.

GoPro 9 inherently records IMU data at 200Hz. The times-

tamps of IMU and camera are synchronized using the timing

information from metadata encoded inside the MP4 video.

GoPro 9 also includes a UBlox UBX-M8030 GNSS chip

capable of concurrent reception of up to 3 GNSS (GPS,

Galileo, GLONASS, BeiDou) and accuracy of 2 m horizontal

circular error probable, meaning 50% of measurements fall

inside circle of 2 m.

B. GoPro Telemetry Extraction

The GoPro 9 MP4 video file is divided into multiple

streams namely video encoded with H.265 encoder, audio

encoded in advanced audio coding (AAC) format, timecode

(audio-video synchronization information), GoPro fdsc data

stream for file repair and GoPro telemetry stream in GoPro

Metadata Format referred as GPMF[50]. GPMF – is a

modified Key, Length, Value solution, with a 32-bit aligned

payload, that is both compact, fully extensible, and somewhat

human readable in a hex editor. Please refer to [50] for

more details on GPMF, here we focus on the camera-IMU

synchronization.

GPMF is divided into payloads, extracted using gpmf-

parser [50], with each payload containing sensor measure-

ments for 1.01 seconds while recording at frame rate of

29.97 Hz as shown in Fig. 2. A particular sensor information

is obtained from payload using FourCC–7-bit 4 character

ASCII key, for instance ’ACCL’ for accelerometer, ’GYRO’

for gyroscope, and ’SHUT’ for shutter exposure times. The

payload also contains the starting time of each payload in

microseconds relative to the start of the video capture. Since



Fig. 2: Payload structure of GoPro metadata format with each
payload containing 30 shutter exposure times, na accelerometer
measurements and ng gyroscope measurements in 1.01s at frame
rate of 29.97Hz.

images are encoded in the video stream, we use the start of

’SHUT’ payload to find relative timing with the accelerom-

eter and gyroscope measurements. Using the start and end

of payloads along with the number of measurements in that

payload, we interpolate the timing of all measurements. We

decode the video stream and extract images from MP4 file

using the FFmpeg library and combine them with the IMU

measurements using timing information from the GPMF

payload.
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Fig. 3: Allan deviation plot of accelerometer (left) and gyroscope
(right) where we fit line with slope -1/2 and 1/2 averaged over all
dimensions obtained using [51]. The white noise σw can be found
at τ = 1s on straight line with slope -1/2 and bias instability σb at
τ = 3s on straight line with slope 1/2.

C. Calibration

Firstly, we calibrate the camera intrinsic parameters. We

use the camera-calib sequences where we move the GoPro 9

camera in front of a calibration pattern placed in an indoor

swimming pool from different viewing angles.
The intrinsic noise parameters of the IMU are required for

the probabilistic modeling of the IMU measurements used

in state estimation algorithms and the camera-IMU extrinsic

parameters. We assume that IMU measurements (both linear

accelerations and angular velocities) are perturbed by zero-

mean uncorrelated white noise with standard deviation σw

and random walk bias, which is the integration of white noise

with standard deviation σb. To determine the characteristics

of the IMU noise, the Allan deviation plot σAllan(τ) as a

function of averaging time needs to be plotted. In a log-log

plot white noise appears on Allan Deviation plot as a slope

with gradient − 1

2
and σw can be found at τ = 1. Similarly,

the bias random walk can be found by fitting a straight line

with slope 1

2
at τ = 3; for details see [52]. Fig. 3 shows

the Allan deviation plot for GoPro 9 camera along with the

noise parameters.

D. Global Map

Most VIO packages ([10], [11], [13]), when applying

loop closure they update only the pose graph, leaving the

triangulated features in their original estimate. In contrast

COLMAP [14] is a global optimization package and the final

result optimizes both poses and feature 3D locations. We run

COLMAP by using 2 images per second resulting in 2000 to

3000 images in cavern and cave sequences, which takes on

average 7 to 10 hours. ORB-SLAM3 [12] performs global

bundle adjustment after loop closure, however often diverges

over large dataset as the local mapping is stopped during

global optimization.

An enhancement is proposed for the SVIn2 framework

to update the 3D pose of the tracked features every time

loop closure occurs in order the 3D features to be consistent

with the pose-graph optimization results. We maintain the

pose graph with the keyframes as vertices for loop closure

and the edges indicate the relative pose constraint between

keyframes. For each keyframe f , the VIO module passes the

following information to the loop closure module:

• Twf pose of keyframe in world coordinate system

• 3D points visible in keyframe li with each point l =
[Pw, F,Q, I] has the following attributes: position in

world frame Pw ∈ R
3, index of keyframe F ∈ N,

landmark quality Q ∈ R, and position of keypoint in

image Il ∈ N
2.

SVIn2, provides a quality measure of a 3D point as

the ratio of the square root of minimum and maximum

eigenvalues of the Hessian block matrix associated with the

3D point. For each 3D point, we calculate its local position

in keyframe as Pf = T−1

wfPw, color C as RGB value at pixel

location I . We collect all the observations of 3D landmark l

from multiple keyframes as Of = [Pf , F,Qf , Cf ] hashed

using keyframe index resulting in O(1) lookup time for

each observation. In the event of loop closure, we deform

the global map so that the relative pose between each point

and its attached keyframes remains unchanged. We fuse the

multiple landmark observations from keyframe f = 1 to N to

obtain global position Pw, color C and quality Q as shown

in Eq. (1).

Pw =

∑N

f=1
Twf ∗ Pf ∗Q
∑N

f=1
Q

,C =

∑N

f=1
Cf ∗Q

∑N

f=1
Q

,

Q =

∑N

f=1
Q

N

(1)

Fig. 4: Feature points generated from SVIn2 [10] and with updated
positions after loop closure. View of the X-Z plane, from the
shipwreck 1 sequence. Please note the three layers in the left image
introduced by the gradual drift of the VIO process. Loop closure
ensures that the z coordinates are consistent.

It should be noted that Pf is expressed as the relative

position with respect to the keyframe and whenever the

pose of keyframe Twf changes due to loop closure updates,



(a) (b) (c) (d)
Fig. 5: Images from the different environments: (a) Shipwreck; (b) Troy Springs; (c) Ginnie Springs cavern; (d) Devil’s system cave.

the location of the 3D landmarks in the global frame also

changes accordingly; producing a globally consistent map as

shown in Fig. 4. Realistically, the number of observations of

a 3D point is quite small compared to the total 3D points

in the scene; thus global map building scales linearly O(n)
with the number of points in the scene.

IV. DATASETS

The GoPro9 Underwater VIO dataset consists of calibra-

tion sequences in addition to odometry evaluation sequences

recorded using 2 GoPro 9 cameras. The two cameras are

referred as gi, i ∈ [1, 2]. Although we provide calibration

results for all the datasets, the calibration sequences are made

available to facilitate users wanting to preform their own

calibration. Datasets can be categorized as:

• camera-calib: for calibrating the camera intrinsic pa-

rameters underwater. We provide calibration sequences

using two calibration patterns: a grid of AprilTags and a

checkerboard for each camera. The calibration patterns

are recorded with slow camera motions at a swimming

pool; making sure the calibration patterns are viewed

from varying distances and orientations.

• camera-imu-calib: for calibrating the camera-IMU ex-

trinsic parameters in order to determine the relative pose

between the IMU and the camera. The camera is moved

in front of the Apriltag grid exciting all 6 degrees of

freedom. This sequence is recorded indoor just to expe-

dite the calibration process as the extrinsic parameters

are the same above and below water. Moreover, we also

provide a camera-calib indoor sequence to assist with

the camera-IMU calibration.

• imu-static: contains IMU data to estimate white noise

and random walk bias parameters. These sequences are

recorded with the camera stationary for at least 4 hours

for each cameras.

• shipwreck: two sequences collected by handheld GoPro

9 on an artificial reef (refueling barge wreck) 55 Km

outside of Charleston, SC, USA; see Fig. 5(a).

• spring open water one sequence collected by handheld

GoPro 9 at the basin of Troy Springs State Park FL,

USA; see Fig. 5(b). The settings had image stabilization

on (hypersmooth) resulting into arbitrary cropping of

the field of view.

• cavern: three trajectories traversed inside the ballroom

cavern at Ginnie Springs, FL; see Fig. 5(c). Inside

the cavern five markers (AR single tags [53]) were

placed to establish ground truth measurements. Each

trajectory consisted of several loops each observing

slightly different parts of the cavern but all ensuring

the tag of that part of the cavern was visible.

• cave: two sequences were collected at the Devil’s sys-

tem, FL; see Fig. 5(d). For the first sequence the GoPro

was mounted on the stereo rig and second sequence was

using only the GoPro.

V. EXPERIMENTAL RESULTS

Due to absence of GPS in underwater environments or

motion capture systems, we use COLMAP [14] to generate

baseline trajectories. COLMAP is a structure-from-motion

(SfM) pipeline equipped with global bundle adjustment and

loop closure capabilities; thus producing consistent camera

trajectory and 3D reconstruction. Even though COLMAP

provides good estimation of shape of trajectories, they can

not be considered as ground truth. As monocular SfM

inherently suffers from scale observability constraints and

global optimization does not converge over large trajectories,

we consider the estimated trajectories as accurate up to scale.

We found that relative scale between COLMAP and all VIO

trajectories was almost equal. Hence, COLMAP trajectories

are scaled by scaling factor calculated from the average of

all VIO trajectories in subsequent sections unless otherwise

specified.

A. Tracking Evaluation Metrics

As COLMAP does not provide accurate scale, we evaluate

the accuracy of the various tracking algorithms using the ab-

solute trajectory error (ATE) metric after Sim(3) alignment

[54]. ATE is calculated as the root mean squared difference

between ground truth 3D positions obtained from COLMAP

pi and corresponding estimated 3D positions p̂i aligned

using optimal Sim(3) rotation matrix R, translation t, and

scaling factor s:

eATE = min
(R,t,s)∈Sim(3)

√

√

√

√

1

n

n
∑

i=1

‖ pi − (sRp̂i + t) ‖2 (2)

B. Tracking Results

We compare the performance of various open source

visual-inertial odometry (VIO) methods on the above de-

scribed datasets. Since, most of the VIO algorithms have

parameters that are tuned at VGA resolution; their perfor-

mance was found to be better at quarter resolution (960×540

pixels). However, we provide datasets at full high definition

resolution (1920×1080 pixels) to further the research in

underwater VIO and SfM. Unless specified otherwise, all

the VIO algorithms use quarter resolution dataset.



We evaluate the performance of VINS-Mono [11], ORB-

SLAM3[12], SVIn2[10] and OpenVINS[13] based on the

RMSE of the ATE as shown in Table II. All the compared

algorithms are equipped with loop closure resulting in low

overall RMSE error. It should be noted that OpenVINS is

based on the Mutiple-State Constraint Kalman Filter, where

as all other methods are based on non-linear least squares

optimization.
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g1 shipwreck1 71.60 0.148 0.098 0.143 0.167
g1 shipwreck2 79.07 0.238 0.207 0.202 0.337
g1 openwater 53.26 0.263 × 0.486 ×

g1 cavern1 243.10 0.090 0.231 0.090 0.288
g1 cavern2 240.60 0.074 0.363 0.097 0.084
g2 cavern3 341.29 0.089 0.687 0.131 0.081

g2 cave1 219.58 0.072 0.150 0.105 0.081
g2 cave2 222.64 0.093 0.089 0.097 0.229

TABLE II: Performance of evaluated open source algorithms on
various datasets based on root mean squared ATE in meters.

All system are able to track most of the sequences until

the end. VINS-Mono and SVIn2 were able to track the

complete trajectory consistently with good accuracy. In the

cavern sequences, ORB-SLAM3 took too long during global

bundle adjustment after loop closure and lost track as it

disabled local mapping during global optimization. How-

ever, ORB-SLAM3 is equipped with map merging and was

able to relocalize and merge the disjoint maps. This pro-

duced slightly inferior performance in the cavern sequences.

OpenVINS required smooth motion for initialization as it

only relies on IMU measurement for gravity alignment and

orientation initialization. Hence, OpenVINS might diverge

unless data collection is started from a static position or

good initialization is found. Finally, it is worth noting that

the open water sequence was recorded with the hypersmooth

option activated resulting in failures in ORB-SLAM3 and

OpenVINS.

C. AR-tag based Validation

As there is no continuous tracking for absolute ground

truth, 3D landmark-based validation with AR tags is used to

quantify the accuracy of the evaluated methods. As a part of

the experimental setup in the cavern sequences with multiple

loops, we placed 5 different AR-tags printed on waterproof

paper at different locations inside the cavern. We observe

the variance of the position of the AR-tags from their mean

position over the whole length of trajectory. If the trajectories

do not drift over time, the markers must be observed at

the same location during multiple visits. Among the cavern

sequences, we detected most AR-tags in the g1 cavern2

sequence; therefore, this sequence is used as reference for

further analysis.
We determined the relative position between the camera

and the tags in g1 cavern2 sequence using ar track alvar3.

3http://wiki.ros.org/ar_track_alvar

By projecting a 3D cube over the tags using the pose esti-

mate, we observed higher noise in the orientation estimate;

hence, only the position of the AR-tags is used for the

error analysis. Once the relative position from ar track alvar

is found, the global position can be found as T k
WM =

T k
WC ∗ PCM where T k

WM is the marker position in world

coordinate frame W at time k, T k
WC is the pose of the camera

C in W at time k (produced by SLAM/odometry system), and

PCM is the relative position of marker M from camera.
Fig. 7 shows boxplots of the displacement from the

mean position of the markers over the whole length of the

trajectory for all the different methods, including COLMAP.

Table III shows the summary of the standard deviation in

translation and the average distance error. All the algorithms

performed well with slightly inferior performance of ORB-

SLAM3 due to tracking issues. Fig. 8 shows the position

of the tags in g1 cavern2 sequence observed by different

packages along with the COLMAP trajectory as reference.

tx(m) ty(m) tz(m) Avg dist. error (m)

COLMAP 0.057 0.072 0.034 0.099

OpenVINS 0.063 0.071 0.034 0.104
ORB-SLAM3 0.246 0.222 0.068 0.268
SVIn2 0.058 0.075 0.049 0.106
VINS-Mono 0.073 0.086 0.045 0.122

TABLE III: Standard deviation in translation of detected tags and
average distance error.

D. Global Mapping

We evaluate the global map produced by enhancing SVIn2

to update the triangulated feature positions after loop clo-

sures by comparing with COLMAP’s sparse pointcloud. The

pointclouds come from different sources and differ in size,

so we align the pointclouds from COLMAP and SVIn2 as

follows:

1) Perform voxel downsampling with voxel size of 10cm.

2) Compute FPFH [55] feature descriptor describing local

geometric signature for each point.

3) Find correspondence between pointclouds by computing

similarity score between FPFH descriptors.

4) Feed all putative correspondences to TEASER++ [56]

to perform global registration finding transformation to

align corresponding points.

5) Fine tune registration by running ICP over original point

cloud with TEASER++ solution as initial guess.

The reconstruction results are compared based on regis-

tration accuracy using fitness and inlier rmse metrics. More

specifically, fitness is the ratio of number of inlier correspon-

dences (distance less than voxel size) and number of points

in SVIn2 pointcloud. Whereas, inlier rmse is the root mean

squared error of all inlier correspondences. Table IV shows

the similarity between SVIn2 and COLMAP reconstruction

based on fitness and inlier rmse metrics. Fig. 10 shows

aligned sparse reconstruction obtained from COLMAP and

SVIn2 in g1 shipwreck1 and g1 cavern2 sequence.

VI. CONCLUSION

In this work we presented a complete pipeline for under-

water SLAM utilizing a commonly available, inexpensive,
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Fig. 6: Trajectories of the evaluated algorithms on g1 shipwreck1, g1 openwater, g1 cavern3, and g2 cave1 sequences from our GoPro
Underwater dataset. COLMAP (black) obtained using global bundle adjustment is used as ground truth up to scale. All other trajectories
are obtained by enforcing real time constraints; even if serial processing modes are available for ORB-SLAM3 and OpenVINS.

Fig. 7: Boxplot of distance error for all tags visible in g1 cavern2.

Fig. 8: The position of observed tags (in total 5) placed at different
places inside the cavern as calculated using evaluated algorithms.
The COLMAP trajectory also shown as reference.

fitness inlier rmse # of correspondences

g1 shipwreck1 0.773 0.058 12,391

g1 shipwreck2 0.500 0.063 9959

g1 cavern1 0.738 0.058 34,481

g1 cavern2 0.727 0.060 44,797

g2 cavern3 0.698 0.059 46,875

g2 cave1 0.107 0.067 6302

g2 cave2 0.326 0.064 19,750

TABLE IV: Similarity between SVIn2 and COLMAP sparse recon-
structions based on fitness and inlier rmse metrics along with no.
of correspondences.

action camera with superior performance. The proposed ap-

proach was tested in open and confined waters, with natural

and artificial illumination, under challenging conditions. The

Fig. 9: A view from the GoPro showing part of the wreck’s deck
and the global map showing the 3D reconstruction of the mapped
area. Please note the round in the reconstruction next to the middle
opening with the broken beams.

Fig. 10: Sparse reconstruction obtained using COLMAP (red) and
SVIn2 (green) from the g1 shipwreck1 and g1 cavern2 sequences.

SVIn2 framework was augmented to correct the 3D features

according to the updated pose graph after successful loop clo-

sure calculations. The resulting map demonstrated accuracy

similar to the much slower global optimization COLMAP

package. The experimental results verify that the specific

camera is capable of producing accurate estimates of the tra-

jectory together with consistent sparse representations of the

environment. Future uses of the proposed framework would

be in recording and documenting the surroundings and the

trajectory of AUVs operating autonomously in challenging

underwater environments such as caves and shipwrecks [57],

[58].

Currently we are investigating synchronization methods

between the GoPro camera and other devices such as Au-

tonomous Underwater Vehicle and sensor suites. By intro-

ducing additional data streams such as water depth and mag-

netometer data, both providing absolute values, we expect to

reduce the drift accumulating over long trajectories without

loops and increase the overall accuracy.
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[4] M. González-Rivero, P. Bongaerts, O. Beijbom, O.

Pizarro, A. Friedman, A. Rodriguez-Ramirez, B. Up-

croft, D. Laffoley, D. Kline, C. Bailhache, et al.,

“The catlin seaview survey–kilometre-scale seascape

assessment, and monitoring of coral reef ecosys-

tems,” Aquatic Conservation: Marine and Freshwater

Ecosystems, vol. 24, no. S2, pp. 184–198, 2014.

[5] M. Modasshir and I. Rekleitis, “Augmenting coral

reef monitoring with an enhanced detection system

utilizing a deep semi-supervised learning approach,”

in IEEE International Conference on Robotics and

Automation, 2020, pp. 1874–1880.

[6] S. Skaff, J. Clark, and I. Rekleitis, “Estimating surface

reflectance spectra for underwater color vision,” in

British Machine Vision Conference (BMVC), 2008,

pp. 1015–1024.

[7] M. Roznere and A. Q. Li, “Real-time model-based

image color correction for underwater robots,” in 2019

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), IEEE, 2019, pp. 7191–

7196.

[8] B. Joshi, S. Rahman, M. Kalaitzakis, et al., “Exper-

imental Comparison of Open Source Visual-Inertial-

Based State Estimation Algorithms in the Underwater

Domain,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Nov. 2019,

pp. 7221–7227.

[9] A. Quattrini Li, A. Coskun, S. M. Doherty, et al., “Ex-

perimental comparison of open source vision based

state estimation algorithms,” in International Sympo-

sium of Experimental Robotics (ISER), Mar. 2016.

[10] S. Rahman, A. Quattrini Li, and I. Rekleitis, “An

Underwater SLAM System using Sonar, Visual, In-

ertial, and Depth Sensor,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

2019, pp. 1861–1868.

[11] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and

versatile monocular visual-inertial state estimator,”

IEEE Transactions on Robotics, vol. 34, 2018.

[12] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M.

M. Montiel, and J. D. Tardós, “ORB-SLAM3: An

accurate open-source library for visual, visual–inertial,

and multimap slam,” IEEE Transactions on Robotics,

2021.

[13] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G.

Huang, “OpenVINS: A research platform for visual-

inertial estimation,” in Proc. of the IEEE International

Conference on Robotics and Automation, 2020.

[14] J. L. Schönberger and J.-M. Frahm, “Structure-from-

motion revisited,” in Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[15] S. Rahman, N. Karapetyan, A. Quattrini Li, and I.

Rekleitis, “A modular sensor suite for underwater

reconstruction,” in MTS/IEEE OCEANS - Charleston,

IEEE, 2018, pp. 1–6.

[16] R. Photo and Video, KELDAN VIDEO 8X LIGHT

(18,000 LUMEN, CRI 85), https://reefphoto.

com / collections / keldan / products /

keldan-video-8x-light-18-000-lumen-

cri-85-2020, 2021.

[17] N. Weidner, S. Rahman, A. Quattrini Li, and I. Rek-

leitis, “Underwater cave mapping using stereo vision,”

in IEEE International Conference on Robotics and

Automation (ICRA), 2017, pp. 5709–5715.

[18] P. Helmholz and D. Lichti, “Assessment of chromatic

aberrations for gopro 3 cameras in underwater envi-

ronments,” ISPRS Annals of Photogrammetry, Remote

Sensing & Spatial Information Sciences, vol. 4, 2019.

[19] E. Nocerino, F. Neyer, A. Grün, M. Troyer, F.

Menna, A. Brooks, A. Capra, C. Castagnetti, and

P. Rossi, “Comparison of diver-operated underwater

photogrammetric systems for coral reef monitoring,”

ISPRS-International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences,

vol. 42, 2019.

[20] F. Neyer, E. Nocerino, and A. Grün, “Image quality

improvements in low-cost underwater photogramme-

try,” International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences,

vol. 42, no. 2/W10, pp. 135–142, 2019.

[21] T. Guo, A. Capra, M. Troyer, A. Grün, A. J. Brooks,

J. L. Hench, R. J. Schmitt, S. J. Holbrook, and M.

Dubbini, “Accuracy assessment of underwater pho-

togrammetric three dimensional modelling for coral

reefs,” International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences,

vol. 41, no. B5, pp. 821–828, 2016.

[22] B. Gintert, A. Gleason, K. Cantwell, N. Gracias, M.

Gonzalez, and R. Reid, “Third-generation underwater

landscape mosaics for coral reef mapping and moni-

toring,” in Proceedings of the 12th international coral

reef symposium, Cairns, Australia, 2012, pp. 9–13.

[23] T. Van Damme, “Computer vision photogrammetry

for underwater archaeological site recording in a low-

visibility environment,” The International Archives of

Photogrammetry, Remote Sensing and Spatial Infor-

mation Sciences, vol. 40, no. 5, p. 231, 2015.

[24] V. Raoult, P. A. David, S. F. Dupont, C. P. Mathewson,

S. J. O’Neill, N. N. Powell, and J. E. Williamson,



“Gopros™ as an underwater photogrammetry tool for

citizen science,” PeerJ, vol. 4, e1960, 2016.

[25] V. E. Schmidt and Y. Rzhanov, “Measurement of

micro-bathymetry with a gopro underwater stereo

camera pair,” in 2012 Oceans, IEEE, 2012, pp. 1–6.

[26] S. M. Nornes, M. Ludvigsen, Ø. Ødegard, and A. J.

SØrensen, “Underwater photogrammetric mapping of

an intact standing steel wreck with rov,” IFAC-

PapersOnLine, vol. 48, no. 2, pp. 206–211, 2015.

[27] B. Allotta, R. Costanzi, A. Ridolfi, C. Colombo, F.

Bellavia, M. Fanfani, F. Pazzaglia, O. Salvetti, D.

Moroni, M. A. Pascali, et al., “The arrows project:

Adapting and developing robotics technologies for un-

derwater archaeology,” IFAC-PapersOnLine, vol. 48,

no. 2, pp. 194–199, 2015.

[28] F. Menna, P. Agrafiotis, and A. Georgopoulos, “State

of the art and applications in archaeological underwa-

ter 3d recording and mapping,” Journal of Cultural

Heritage, vol. 33, pp. 231–248, 2018.

[29] C. Balletti, C. Beltrame, E. Costa, F. Guerra, and P.

Vernier, “Underwater photogrammetry and 3d recon-

struction of marble cargos shipwreck.,” International

Archives of the Photogrammetry, Remote Sensing &

Spatial Information Sciences, 2015.

[30] N. Palomeras, N. Hurtós, M. Carreras, and P. Ridao,

“Autonomous mapping of underwater 3-d structures:

From view planning to execution,” IEEE Robotics

and Automation Letters, vol. 3, no. 3, pp. 1965–1971,

2018.

[31] D. F. Coleman, “Underwater archaeology in

thunder bay national marine sanctuary, lake

huron—preliminary results from a shipwreck

mapping survey,” Marine Technology Society Journal,

vol. 36, no. 3, pp. 33–44, 2002.

[32] K. Bain, R. Cuttler, E. Kieran, and S. Al Naimi,

“Wreck and ruin—mapping the shipwreck resource

of qatar,” in Proceedings of the Seminar for Arabian

Studies, JSTOR, 2014, pp. 35–41.

[33] A. A. Mogstad, Ø. Ødegård, S. M. Nornes, M. Lud-
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