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Abstract— Coral species detection underwater is a challeng-
ing problem. There are many cases when even the experts
(marine biologists) fail to recognize corals, hence limiting
ground truth annotation for training a robust detection system.
Identifying coral species is fundamental for enabling the mon-
itoring of coral reefs, a task currently performed by humans,
which can be automated with the use of underwater robots. By
employing temporal cues using a tracker on a high confidence
prediction by a convolutional neural network-based object
detector, we augment the collected dataset for the retraining
of the object detector. However, using trackers to extract
examples also introduces hard or mislabelled samples, which is
counterproductive and will deteriorate the performance of the
detector. In this work, we show that employing a simple deep
neural network to filter out hard or mislabelled samples can
help regulate sample extraction. We empirically evaluate our
approach in a coral object dataset, collected via an Autonomous
Underwater Vehicle (AUV) and human divers, that shows
the benefit of incorporating extracted examples obtained from
tracking. This work also demonstrates how controlling sample
generation by tracking using a simple deep neural network can
further improve an object detector.

I. INTRODUCTION

Coral reefs are an integral part of the marine ecosys-

tem. Coral reefs are also the habitat of numerous marine

species [1]. However, coral reefs are rapidly decreasing in

area and marine population due to climate change and ocean

pollution. Global temperature will increase by 2 − 4.5◦C

as per recent predictions from scientists. Due to this dire

condition, marine biologists are closely monitoring the coral

reefs. Their methods of monitoring coral reefs include scuba

divers and autonomous or remotely operated vehicles to

capture visual data of the coral reefs. Usually, a transect

over a coral reef is surveyed, and afterward, the data are

manually annotated according to coral species. Later, experts

analyze the annotated data to determine the health and the

population diversity of the coral reefs. Such a procedure

is tedious and time-consuming. In order to reduce such

offline tasks, there have been efforts to automate annotation

systems [2]–[4] and analysis procedures [5]. However,

these systems mentioned above only speed up a part of the

entire coral reef monitoring process. The other tedious part,

data collection, and online surveying, still relies entirely on

human experts. For a fully autonomous surveying system,

we need an online detection guided navigation capability.

Modasshir et al. [6] utilized coral detection along with the

The authors would like to thank the National Science Foundation for
its support (NSF 1513203). The authors would like to acknowledge the help
of the College of Engineering and Computing, University of South Carolina.

Fig. 1. Aqua2 vehicle navigating over a reef, collecting coral visual data.

Direct Sparse Odometry (DSO) [7] system to create a 3D

semantic mapping in order to improve the data acquisition

and analysis system. All these systems, to perform optimally,

require an excellent object detection algorithm that can detect

coral species under challenging situations.

Deep learning has revolutionized the object detection sys-

tems, resulting in state-of-the-art object detectors in standard

vision benchmarks. These object detection algorithms are

proven to work well across many domains. In the case of

coral detection datasets [2], [4], [8], most of these datasets,

being point annotated, are not compatible with object de-

tection algorithms which require bounding box annotation.

Hence, we have carefully developed a dataset of Caribbean

coral species with bounding box annotations, which were

used in our previous work [4], [5]. The annotation of coral

species in our dataset was only possible when the coral

objects were closer, less blurry, and well-exposed. However,

these optimal conditions were not common in the dataset

due to hazing, blurring, light variation, and red channel

suppression. When we consider monitoring coral reefs via

autonomous vehicles, the detection of objects becomes more

complicated. Figure 1 presents the Aqua2 Autonomous Un-

derwater Vehicle (AUV) [9] collecting part of our dataset

over the coral reefs of Barbados. These complications arise

mainly from the nature of the AUV’s movement, which

introduces motion blur, mostly during rotations. Also, while

moving along a transect, the objects near the border of the

field of view (FOV) of the AUV are generally further away.

Due to poor visibility underwater, objects more than a few

meters away are difficult to recognize. Therefore, object

detection performs poorly, resulting in a worse analysis of the

coral reefs. This issue also presents an opportunity: objects



further ahead and objects near the FOV’s left and right

corner, are usually equally blurry. Since the transects usually

follow a straight line pattern, the further objects straight

ahead become more evident over time. Hence, finding a way

to augment the training dataset with such objects will help

the detection algorithms.

In work by Modasshir et al. [6], the semantic mapping

system employed both tracking and detection to perform

population estimation of coral species while building a 3D

semantic map. In the experiments of that work, most of the

detections were observed to take place when the objects got

closer to the AUV’s forward motion. When objects were

closer, sometimes detection failed (in a few frames), while

tracking succeeded in identifying the objects in-between

successful frames. We propose a method to utilize these coral

objects carefully, either predicted or tracked, to improve the

detection model in a self-training manner. Self-training is

a strategy where a trained model’s predictions are utilized

to retrain the model. These tracked and detected corals,

henceforth called “soft-labels”, are used to augment the

training dataset of the detection model. However, inserting

all soft-labels into training may also be counterproductive as

tracking systems are known to lose track, and the detection

model sometimes generates false predictions. Therefore, to

constrain the soft-label usage in training, a classification

network is used to filter out potentially “harmful” soft-labels.

In this paper, we propose a semi-supervised approach

of augmenting an autonomous coral tracking system by

utilizing spatio-temporal continuity of the data. Our main

contributions are as follows:

• We propose a framework for augmenting the training

dataset from coral reef transects. We show how to mine

soft-labels by back and forth tracking.

• We construct a constrained loss function to retrain the

detection network.

• We demonstrate how a classification network can help

filter out “harmful” soft-labels.

The next section reviews related works. Section III intro-

duces the proposed method explaining soft-label generation

and incorporation of these labels. Section IV describes the

datasets and reports the experimental results to validate the

proposed method. Finally, we conclude the paper with future

work in section V.

II. RELATED WORKS

There are several works on coral classification [3], [4],

[8], [10] and detection [5]. In our previous works [4]–[6],

[11], we developed a CNN detector and tracker system for

coral species. To mine soft-labels for retraining, we utilize

the detector developed in [5]. In work by Modasshir et al.

[5], the RetinaNet [12] was redesigned to train a detector

for eight coral species. This work particularly suits our need

because the experiments are all performed in the same area

of a Caribbean reef with the same species of corals. Hence,

we choose the RetinaNet with the settings and the dataset

from [5] as our detection model. Among various vision-

based trackers [13], the Kernelized Correlation Filters (KCF)

[14] performs reasonably online in AUVs [6]. The KCF

tracking method is capable of evaluating when an object is

out of the field of view while tracking in real-time.

Semi-supervised training has a rich history in computer vi-

sion literature [15]–[20]. Among various approaches in semi-

supervised methods, the proposed system matches mostly

self-training methods [21]–[24]. In a self-training approach,

the model is initially trained on fully annotated data then

mines for pseudo-labels on weakly-annotated or unlabelled

data. The pseudo-labeled data is then used to retrain the

model. This process is repeated incrementally [25], [26].

The mining of hard examples has also proven to be useful

to create robust object detectors [27]. Recent state-of-the-art

object detection algorithms implicitly mine for hard negative

examples from unlabelled parts of the images in the training

dataset. Rosenberg et al. [15] generated pseudo-labeled data

by using detections from a pretrained object detector on unla-

belled data and then retrained the object detector using these

pseudo-labeled data in an incremental procedure. Combining

tracking with detection can help generate better and more

hard positive examples. In a recent work by Radosavovic

et al. [28], the authors showed improved performance for

the state-of-the-art detectors by incorporating a tremendous

amount of pseudo-labeled data. Jin et al. [29] used tracking

in videos to produce pseudo-labeled data to improve an

object detection model. Our work uses forward tracking

similar to [29]; however, we also track objects backward to

generate relatively harder soft-labeled data. The backward

tracked soft-labels are carefully filtered using an outlier

rejection network to improve the detection model. In a video

sequence, the spatio-temporal cues can be utilized by SLAM

systems [30]. In our work, DSO [7] is used to verify tracked

objects by feature matching. Aruni et al. [31] proposed a

soft-label distillation loss function to regulate a retraining

procedure by assigning a lower weight to the soft-labels.

Down-scaling the effect of the loss of soft-labels allows the

network to keep the knowledge of the annotated labels while

slowly learning the soft-labeled data and avoids learning

incorrect soft-labels.

III. METHODOLOGY

Figure 2 presents the overview of the proposed system.

Consider frames f−m to fn−1, the system first feeds frame

f0 to the detection model. The bounding box locations with

high confidences, boxlocs from the detection model are then

used to initialize the tracking method. Tracking is performed

in both direction: backward up to m frames and forward

up to n−1 frames. At the nth frame, the detection is

again performed to retrieve the new bounding box locations,

boxlocs, of the corals. The new bounding box locations are

then matched against the tracked bounding boxes, tracklocs.

If there is a significant overlap between boxlocs and tracklocs,

then the locations of tracklocs are modified to reflect the cor-

responding boxlocs. Unmatched boxlocs are used to initialize

new trackers instances that search for spatio-temporal cues

both in backward and forward direction. For details about the

3D semantic mapping included in the system, please refer to
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Fig. 2. Overview of the proposed approach.

Modasshir et al. [6]. Both boxlocs and tracklocs are used to

create a soft-labeled dataset datasets which we describe in

Sec. III-B. Retraining the detection model on both expert-

labeled datasete and soft-labeled datasets is explained in

Sec. III-C.

A. Detection and Tracking

The proposed detection model is inspired by Reti-

naNet [12]. RetinaNet is a single-stage detection model

designed on top of a Feature Pyramid Network (FPN) [32].

Utilizing top-down pathway and lateral connections, the

FPN enhances a standard CNN with multi-scale features.

These multi-scale features enable object detection at different

sizes. In our detection model, the FPN builds on top of a

ResNet [33] network with a 50 layer variation. There are

two sub-networks on top of the FPN for classification and

bounding box regression. We redesign the final layer of the

classification network to reflect the number of classes in our

dataset. The model is optimized using Focal Loss [12] that

ensures classes with fewer samples are focused. For a target

class, k with estimated probability, pk ∈ [0,1], the focal loss

is defined as:

loss(pk) =−α(1− pk)
γ log(pk) (1)

where α ∈ [0,1] is the weighting factor and γ ≥ 1 is a

focusing hyper-parameter. These hyper-parameters assign

lower loss to easily classifiable examples, enabling the model

to focus on hard samples. The regression sub-network is

trained using smooth L1 loss. Once an object is detected, it

is tracked using Kernelized Correlation Filters (KCF) [14].

B. Soft-Label Generation

Soft-labeled samples are generated jointly by the detection

model and tracking algorithm. We obtain the predictions

boxloc on unseen data by the detection model. Then, the

predictions with posterior con fscore higher than some thresh-

old θc, are added to the soft-labeled dataset, datasets. In our

work, we find that setting 0.65 for θc works well empirically.

Tracked objects across frames are usually noisy; especially

the backward tracked objects. These noisy labels are filtered

using two procedures. For forward tracked objects, we obtain

the predictions after certain frames, n. We match predictions

with confidence scores higher than θ with forward tracked,

trackloc. If the intersection-over-union (IOU) is above a

certain threshold, θo, and the labels match, we add these

samples to datasets. The IOU is the ratio of the intersection

area of boxloc and trackloc over the union of boxloc and

trackloc. Empirically we select 0.7 as θo. For backward

tracked objects, we observed a very high level of noise.

Because these trackloc represent the hard instances for the

detection model, they are at times detrimental to the detector

during training. We back-track up to some m frames and

filter using the outlier rejection net III-D before adding to

datasets except for the very first iteration when we do not

have a trained outlier rejection network.

Handling false positive predictions by the detector can
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Fig. 3. Outlier Rejection Network

also be used to create soft-labeled samples. Because of the

AUV’s transect type motions, empirically, we observe correct

predictions at a closer range for objects miss-predicted when

far away. Therefore, there is inconsistency between the labels

of trackloc of miss-predicted at frame f0 and predictions

boxloc at frame fn. For such cases, we trust the labels of

boxloc and relabel the corresponding trackloc.

C. Training on the Combined Dataset

From the network training perspective, the learning pro-

cedure is similar for both expert-labeled datasete and soft-

labeled datasets. As the detection model did not recognize

the samples in datasets, it contains harder samples. We

intrinsically benefit from the earlier usage of focal loss in

our training process as focal loss prioritizes hard examples.

However, the deterioration of the performance of the detector

on “easy” samples from datasete is not desirable. Therefore,

we manually put a down-scaling weight φ on loss calculated

for datasete before calculating the total loss losstotal on the

entire augmented dataset.

losstotal = loss(pke)+φ · loss(pks) (2)

where loss(pke) is the focal loss from Equation 1 from

datasete and loss(pks) from datasets.

D. Outlier Rejection Network

It was observed that for backward tracked objects, the

samples were mostly unclear, blurry, and less illuminated.

Therefore, to filter out samples from datasets that are too

noisy, a two-way classification network is enough where the

network only classifies a sample as “useful” or “harmful” in

a coral class agnostic manner. We redesign the VGG16 [34]

network to suit this purpose, as shown in Figure 3. The fully

connected layers are replaced by an average pooling layer,

and the softmax layer is modified to reflect our two classes.

The dataset to train this classification network is obtained

from the retraining level of our approach. The labels for the

samples in datasets are obtained by using the training loss

on datasets. For the loss, losssi for a sample si is over a

threshold θs, the label yi is calculated:

yi =

{

1, if losssi ≥ θs (discard)

0, otherwise (keep).
(3)

We choose 0.7 for θs based on a few experiments. The

model is optimized with cross-entropy loss and a learning

rate of 0.001 with a decay of 10−7 every 20 epochs.

Dataset # images # annotations

GoPro-GT 13523 34510
Aqua-GT 2410 7041

GoPro-Det 20000 36524
GoPro-Track f or 20000 7484
GoPro-Trackback 20000 3426

Aqua-Det 1500 3745
Aqua-Track f or 1500 1421
Aqua-Trackback 1500 677

TABLE I

DATASET SUMMARY: LISTING THE NUMBER OF IMAGES AND

ANNOTATIONS. GOPRO-GT AND AQUA-GT ARE THE EXPERT

ANNOTATED DATASET. FOR DETECTION AND TRACKING IN VIDEOS

FROM GOPRO AND AQUA, A SUBSET OF THE FIXED NUMBER OF IMAGES

WERE USED.

IV. EXPERIMENTAL RESULTS

Experiments were performed using two datasets: GoPro

dataset and Aqua2 dataset [5]. We present the quantitative

results of detection on these two datasets as well as qualita-

tive detection results on unlabelled data. We also present the

coral population density estimation of semantic 3D mapping

[6].

A. Dataset Description

GoPro Dataset: The dataset was created with underwater

videos of Barbados’ coral reef captured by GoPro cameras.

The dataset contains annotations for seven different kinds of

corals (Brain, Maze, Mustard, Finger, Fire, Star, and Starlet).

There are two transects from the GoPro videos: a) 3 minutes

27 seconds over a length of 40.29 meters and b) 10 minutes

over a trajectory of 315.39 meters. A scuba diver collected

the 3-minute long trajectory, and the 10-minute long transect

was captured by using a diver propulsion vehicle (DPV).

Aqua Dataset: The Aqua2 AUV was utilized to capture

videos for a region of Barbados’ coral reef. The Aqua dataset

is also annotated for the same species of corals as the GoPro

dataset. The Aqua2 dataset has a trajectory of 1 minute 17

seconds.

Soft-labeled Dataset: High confidence predictions were

used to create soft-labels, denoted as Det in the dataset

description table I. We also collect soft-labels by tracking

forward and backward the bounding box locations from the

detections. The forward-tracked soft-labels are denoted as

track f or and the backward-tracked soft-labels as trackback in

the dataset description table table I. It is worth noting that

in forward-tracking, if a tracked object is detected after n

frames, the object is labeled as part of the Det dataset.

B. Implementation Details

In the experiments, 20% of the GoPro-GT and the Aqua-

GT datasets were held out for testing. Firstly, the detector

model was trained on the remaining 80% of the GT datasets,

referred to as training-GT datasets afterward, following the

training procedure described in Modasshir et al. [5]. After

the training process was completed, the training-GT datasets

were then feed-forwarded through the entire system, shown



Fig. 4. Detection Results: Corals undetected with the earlier detector of [6], but detected with the proposed approach are marked with an additional
orange square. The first row presents images collected by a GoPro camera, while the second two rows present images from an Aqua2 AUV.

in Figure 2 and the confidence scores of detections boxloc,

and tracked locations in images trackloc were recorded.

The high confidence predictions (¿70%) were used as soft-

labels and incorporated into the training dataset. Finally, the

training-GT datasets with expert labels and soft-labels are

used to retrain the detection model using the loss function

in Equation 2. After retraining is finished, the losses on

all samples of training-GT datasets were calculated, and

we created another dataset using Equation 3 for the outlier

rejection network. This outlier rejection network learns to

separate the learnable samples and “very hard” samples and

used to remove tough samples from the future retraining

processes. The outlier rejection network was used to filter

out “very hard” or incorrect samples from the combined

training set. The detection model was then trained again,

thus beginning the iterative process. About 100 epochs for

iterative training are sufficient for the classification network

to perform reasonably well.

C. Evaluation of Detection

The results of the evaluation set are presented in table II.

On the ground truth data, we were able to achieve average

precision (AP) of 24.6 and 13.9 on the GoPro and Aqua

datasets correspondingly. We repeat the process of mining

for soft-labeled samples, retraining, and outlier rejection. We

were able to increase the AP of the GoPro dataset by 16.5

and for the Aqua dataset by 11.4; see Table II.

Figure 4 shows detection results on the evaluation dataset.

Empirically, we observe the detections of previously unde-

tected coral objects. Utilizing the soft-labels also improved

the detection of coral species with relatively fewer samples,

i.e., Fire coral.

Dataset AP(mean ± std)

GoPro-GT 24.1 ± 0.54
Aqua-GT 13.7 ± 0.21
GoPro-Aug 40.6 ± 0.92
Aqua-Aug 25.1 ± 0.67

TABLE II

DETECTION RESULTS ARE PRESENTED IN AVERAGE PRECISION (IOU

0.75) REPORTED AS MEAN AND STANDARD DEVIATION OVER 10

TRAINING ITERATIONS.

D. Evaluation of Counting

Table III shows the comparison of our network against

earlier works by Modasshir et al. [5], [6]. We observe better

detection and quantification of the coral population in the



Brain Mustard Star Starlet Maze Sponge

3min [6] 31/37 0/2 5/7 37/43 11/15 17/17

3min (proposed approach) 35/37 1/2 7/7 41/43 14/15 17/17

10min [6] 90/97 39/47 68/75 161/176 26/28 5/6

10min (proposed approach) 94/97 44/47 77/75 177/176 28/28 6/6

TABLE III

CORAL COUNTING FOR TWO DIFFERENT TRAJECTORIES. CNN-PREDICTION/HUMAN-ANNOTATED. WE PRESENT THE RESULTS BEFORE THE

PROPOSED AUGMENTATION; SEE [6], AND THE PROPOSED APPROACH.

transects. In some cases, the counting by CNN based system

exceeded human-annotated numbers, i.e., star and starlet

coral in 10-minute trajectory. Detection of hard instances by

the network resulted in over-count. However, it was difficult

to assess whether the network predictions are correct, since

revisiting the same coral reef in Barbados was not possible

during experimentation. Other than these over-count, the

system estimated the coral population fairly accurately.

Fig. 5. 3D semantic map of the 10 minute trajectory. Features from different
corals are displayed in different colors according to Table IV.

E. Evaluation of Mapping

Figure 5 shows the result of the 3D semantic mapping for

the 10-minute trajectory. The reconstruction of coral species

was denser and more precise owing to the better bounding

box prediction of the improved detector. The color-codes for

each coral classes used in the reconstruction are given in

Table IV.

Coral: Brain Mustard Star Starlet Maze Sponge

Color: Green Purple Teal Magenta Aqua Blue

TABLE IV

COLOR CODES USED IN SEMANTIC MAPPING FOR DIFFERENT CORALS.

V. CONCLUSIONS

In this paper, we present a novel way to facilitate the

coral species annotation from visual data collected during

autonomous operation over coral reefs. Extensive data col-

lected using the Aqua2 AUV and a GoPro camera on a

Diver Propulsion Vehicle (DPV), see Figure 6, have been

used to validate the proposed approach. Furthermore, the

collected data have been re-annotated to produce a robust

Fig. 6. A custom-made stereo camera suite and a GoPro camera mounted
on a DPV during data collection.

dataset of Caribbean corals. By utilizing the spatio-temporal

cohesiveness of the data, as collected by an autonomous

robot, we demonstrated that object consistency can make the

identification process more robust.

Utilizing the proposed approach, autonomous coral reef

mapping will be extended to cover longer trajectories and

included currently underrepresented species. Future work

will integrate the Acoustic, Visual, Inertial state estimation

presented by Rahman et al. [35] utilizing loop closures

for the robust estimation of the observing robot’s trajectory

in conjunction with the navigation capabilities presented in

Xanthidis et al. [36] for navigating close to the corals (higher

detection rate) while following pre-specified trajectories. Au-

tonomous operations of AUVs [9] will enable the collection

of coral population data in a systematic manner. Furthermore,

a framework to combine point-annotated coral with box-

annotated ones, will provide the marine biologist community

with a tool to analyze additional data.
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