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Abstract— Navigation underwater traditionally is done by
keeping a safe distance from obstacles, resulting in “fly-overs”
of the area of interest. Movement of an autonomous underwater
vehicle (AUV) through a cluttered space, such as a shipwreck
or a decorated cave, is an extremely challenging problem that
has not been addressed in the past. This paper proposes a
novel navigation framework utilizing an enhanced version of
Trajopt for fast 3D path-optimization planning for AUVs. A
sampling-based correction procedure ensures that the planning
is not constrained by local minima, enabling navigation through
narrow spaces. Two different modalities are proposed: planning
with a known map results in efficient trajectories through
cluttered spaces; operating in an unknown environment utilizes
the point cloud from the visual features detected to navigate
efficiently while avoiding the detected obstacles. The proposed
approach is rigorously tested, both on simulation and in-pool
experiments, proven to be fast enough to enable safe real-time
3D autonomous navigation for an AUV.

I. INTRODUCTION

This paper addresses the problem of trajectory planning

for underwater structure inspection and mapping. Underwater

structure mapping is an important capability applicable to

multiple domains: marine archaeology, infrastructure main-

tenance, resource utilization, security, and environmental

monitoring. While the proposed approach is not limited to

the underwater domain, this work addresses the challenging

conditions encountered underwater, with a special focus on

shipwreck mapping. Underwater mapping has traditionally

focused on acoustic sensors [1]–[4]. However, most inspec-

tions require visual input [5]–[7]. The state-of-the-art in

autonomous operations is to observe the target structure

from far enough to avoid navigation in cluttered spaces,

while remotely controlled operations present entanglement

hazards. As a result, most inspections suffer from gaps due

to occlusions, and low-resolution due to the water effects on

the camera sensor. The presented work enables autonomous

operations underwater close to the structure to be inspected;

before this was only partially possible with teleoperation.

Maps of underwater structures such as wrecks, caves,

dams, and docks are often available either through acoustic

sensing [8] or via photogrammetry [9], [10]. In this paper

A. O’Connell is with the Computer Science Department, Vassar
College, Poughkeepsie, NY. The remaining authors are with the Computer
Science and Engineering Department, University of South Carolina,
Columbia, SC, USA [mariosx, nare, hdamron, srahman,
jvj1]@email.sc.edu, aoconnell@vassar.edu,
[jokane,yiannisr]@cse.sc.edu

This work was made possible through the generous support of National
Science Foundation grants (NSF 1513203, 1526862, 1637876, 1849291).

Fig. 1. Aqua2 AUV navigating over the Stavronikita shipwreck, Barbados.

we present an augmentation of Trajopt [11], a popular path-

optimization open source package for (mobile) manipulators,

to facilitate 3D trajectory planning of an AUV utilizing

either a known map or an online constructed local map. The

proposed method is realized on an Aqua2 vehicle [12]. The

Trajopt planner is augmented with a sampling-based correc-

tion scheme that resolves the local minima problem. Fur-

thermore, different map representations were tested including

geometric primitives and point-cloud implementations.

Fast motion planners, such as KPIECE [13], use physics-

based simulators to plan with kinodynamic constraints and

can solve the planning problem for systems with non-trivial

dynamics. While previous work [14]–[16] provided an anal-

ysis of the dynamics of the Aqua vehicle, the model is still

inaccurate and moreover, the on-board computing resources

do not allow for utilizing a physics-based simulator online.

The proposed method was rigorously tested in simulation

and in the pool. Utilizing the Gazebo simulator [17] with an

underwater extension that emulates the kinematic behaviour

of the Aqua2 vehicle, the tested environments demonstrated

changes in depth, and attitude in three dimensions for realiz-

ing the produced trajectories. Furthermore, tests at an indoor

diving pool, with various obstacle setups, verified the validity

of the proposed approach.

The proposed approach provides contributions in two

conceptual areas: path planning of mobile robots in 3D

and underwater navigation in cluttered environments. More

specifically, we augmented the Trajopt package enabling op-

erations of an autonomous mobile robot in three dimensions.

We introduced a fast warm-starting method to avoid local

minima issues using an RRT-based approach. Furthermore,

we demonstrated the use of Trajopt for online planning

based on convex decomposition of unordered point clouds.

The proposed framework enabled underwater operations in



cluttered spaces. In particular, a light-weight geometric nav-

igation framework utilizing the full 3D motion capabilities

of the Aqua2 AUV, enabled operations with a known map,

or in unknown areas of cluttered underwater environments.

Autonomous operations of real-time planning and replanning

in conjunction with visual inertial state estimation in envi-

ronments of substantial complexity, even without utilizing a

known hydro-dynamics model.

II. RELATED WORK

In environments with complex dynamics, such as under-

water, one of the main challenges is to generate safe paths.

Several methods have been explored to correct the deviations

caused by inertia and currents, including the FM* planning

system [18]. Other methods rely on observations about the

structure of the terrain [19] and satellite imagery [20] to

estimate the effects of currents. Genetic algorithms [21] and

mixed integer linear programming approaches [22] have also

been used to support the computation of paths in dynamic

underwater environments.

The work of Hernandez et al. [23] provided an online

sampling based framework for an AUV in 3D, accounting

also for the dynamics of the system. The proposed framework

although was shown to be capable to work in real-time, it

needed close to half a minute for producing solutions with

clearance guarantees. Moreover, during the online experi-

ments the replanning was close to 1Hz but the robot was

constrained to a constant depth reducing the planning space

to 2D. When accounting for currents, other studies [24], [25]

utilize sampling-based techniques and a complete dynamic

model of the AUV, but are only shown to work in uncluttered

environments with few obstacles.

Another challenge in underwater path planning is to gen-

erate paths rapidly enough to be able to compute and execute

them online. Green and Kelly demonstrated a branching-

based method for quickly generating safe paths in a 2D

environment [26] which has since been the basis of sev-

eral optimizations [27]–[30]. Path planning has also been

optimized by reducing many candidate paths to equivalence

classes [31].

Though optimal sampling-based techniques [32]–[35] pro-

vide near-optimal solutions and have improved over time,

they, in general, require more computational resources, more

time, and often an exhaustive search of the configuration

space. Some studies on online underwater navigation with

sampling-based techniques quickly generate safe paths, how-

ever, they are limited to 2D motions [36] or require addi-

tional assumptions regarding the vertical relief [37] without

exploiting the full potential of available 3D motions.

In some applications, it is necessary for AUVs to nav-

igate in an environment without global knowledge of the

environment. In such cases, obstacles are observed, often

by stereo vision as has been done on aerial vehicles [38].

Exploration of an unknown environment by aerial vehi-

cles has been performed using a 3D occupancy grid using

probabilistic roadmaps (PRM) and the D* Lite algorithm

for planning [39]. Although underwater and aerial domains
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Fig. 2. System architecture.

provide different challenges, both require path planning in

3D. For an AUV such as Aqua2, whose movements do

not correlate exactly with control inputs, planning becomes

even more difficult. Other AUVs have also been used for

path planning, such as RAIS [40] and DeepC [41]. Another

AUV, REMUS [42], used obstacle avoidance specifically for

exploration of shallow waters.

The Aqua2 AUVs have a variety of swimming gaits in

order to enable tasks such as swimming in a straight line,

on the side, in a corkscrew motion, or performing a barrel

roll [43]. Visual tags were used to enable the AUV to

navigate over structures [44]. Furthermore, the robot learned

a reactive controller for navigating over the coral reef while

maintaining a safe distance [45], [46].

III. PROPOSED APPROACH

The objective of this paper is to develop algorithms that

enable the Aqua2 robot to navigate reliably and safely

through a dense field of obstacles, given start and goal poses

sinit and sgoal. Figure 2 presents an overview of the proposed

system.

A. System Overview

The target system is the Aqua2 amphibious platform [47],

pictured in Figure 1. In its aquatic configuration, Aqua2 uses

the motion from six flippers, each independently actuated by

an electric motor, to swim. Aqua2 has 6 degrees of freedom,

of which five are controllable: two directions of translation

(forward/backward and upward/downward), along with roll,

pitch and yaw.

The robot’s primary sensing modality is vision. It is

equipped with three iDS USB 3.0 UEye cameras: two facing

forward and one in the back. The front-facing cameras are

used for navigation and data collection. In addition to these

cameras, Aqua2 also has an IMU and a pressure sensor which

are used for controlling the motions and can be utilized for

visual-inertial state estimation [48]–[51]. The fields of view

of the cameras are 120 degrees (horizontal) and 90 degrees



(vertical) tilted downward by 40 degrees from the horizontal

plane.

B. Trajectory Planning

Motion planning in this context must balance several

competing constraints, including the need for efficiency,

the possible need to replan, and the limited computational

power available on the robot (particularly when one considers

the other essential tasks of perception, mapping, etc.). In

addition, because of its complex —yet not readily modeled—

dynamics and kinematics combined with the unpredictable

nature of maritime currents, the system is quite susceptible

to disturbances. Thus, the planner should provide solutions

that satisfy some minimum clearance to avoid collisions.

To satisfy this challenging trade-off, the proposed system

utilizes an optimization-based planning approach. Specifi-

cally, the implementation uses Trajopt [11], which has been

proven as a very robust method for manipulators and mobile

manipulators in 2D. It is computationally efficient and takes

into account not only the states but the complete path

between them using the transition between states, contrary to

alternatives such as CHOMP [52] and STOMP [53]. To the

best of authors’ knowledge, Trajopt has not yet been used for

3D motion planning for mobile robots, nor in the underwater

domain, in the past.

The main idea behind Trajopt is to represent the path S
from sinit to sgoal as an ordered list of waypoints, each of

which is a pose for the robot. Starting from an initial set of

waypoints —generally based on the linear interpolation be-

tween sinit and sgoal— Trajopt forms a convex optimization

program, in which each degree of freedom of each waypoint

is a variable, the obstacles are encoded as constraints, and the

objective is to minimize a weighted form of the path length.

An important advantage is that, because of this general form,

one can insert additional content-specific constraints, such as

a maximum depth.

1) Input Methods: Trajopt optimizes the distance between

the swept-out volumes of the robot’s trajectory and the

obstacles; as shown in Figure 3. For efficiency, Trajopt

expects the map to be stored in a form where the normal

vectors between the robot’s body and the obstacles can be

extracted rapidly. One geometric method for presenting the

obstacles to Trajopt, suitable in cases where the environment

is well-known, consists of specifying the obstacle shapes and

locations as instances of a set of built-in primitives, typically

as rectangular boxes.

We also implemented a version that utilizes a point cloud

input representation, which can be produced directly from

raw sensor data. First, the point cloud is provided as input to

the fast surface reconstruction algorithm of Zoltan et al. [54].

Then, the algorithm approximates the produced mesh via

a collection of convex polytopes which can be directly

processed by the Trajopt optimizer.

2) Constraints: The objective function is parameterized

by coefficients for the path length and the obstacle avoidance

and by a distance parameter Dmin, measuring the maximum

distance from the obstacles where the cost will be applied.

(a) (b) (c)

Fig. 3. Path optimization with Trajopt [11] in three different stages: (a)
The initial path is generated by simple interpolation from sinit to sgoal

with possibly some states in collision. (b) An intermediate stage during
optimization. (c) The final trajectory, shown with the distances to the swept-
out volumes.

These parameters required tuning for the underwater environ-

ment and the AUV used; Section IV describes the specific

values utilized in our experiments.

Our system employs an additional term in the cost to

ensure that the robot will not reach the surface, and will

remain entirely underwater. The cost function cz was applied

on the z coordinate of all the states si ∈ S, where si =
[xi, yi, zi, q

x
i , q

y

i , q
z
i , q

w
i ], and defined as follows:

cz(zi) =

{

zi + ǫ if zi > −Dmin

0 otherwise
(1)

where ǫ > 0. Assuming that on the surface z = 0, the

condition in Equation 1 penalizes every state above −Dmin

ensuring that the robot will remain underwater, accounting

also for potential inaccuracies in control.

C. Overcoming Local Minima

A problem that many optimization-based motion planners,

including Trajopt, face is the possibility that the optimization

may converge to a local minimum. Though generally rare in

the implemented system, this situation can present a safety

hazard for the robot, because the completed path may not

necessarily maintain safe distance from the obstacles. Local

minima can be present, for example, either (a) when the

path is passing through an obstacle and there is no free

space in a Dmin radius, or (b) when the path is passing

through a narrow passage and the desired clearance from

the obstacles cannot be maintained. Typically, such issues

are resolved with warm-starting of the optimization process:

a fast motion planner is used to generate beforehand a set of

valid paths and these paths are used consecutively to initialize

the optimization until a valid solution is found. An example

of such work [55] for Trajopt uses the BiT-RRT [56] planner.

We propose the following novel iterative warm-starting

approach, using BiT-RRT [56], by inserting virtual obstacles

into the planning process. The optimization step works with

the motion planner in the following manner:



1) The optimization result is checked and in case of

failure, the waypoint with the highest cost is selected.

2) The map used by the motion planner is altered by

adding a virtual obstacle of size Dmin in the position

of that waypoint.

3) The planner plans a path avoiding the new high cost

area of local minimum with a smaller than Dmin

distance from obstacles during collision checks.

4) The new path is used to initialize the path optimization

process and the procedure continues if needed.

This process forces the planner to identify an alternative path

that avoids the most problematic portion, in terms of the cost

function, of the previous path.

D. Trajectory Following

1) Localization: The problem of underwater localization

has proven to be extremely challenging [57], [58] due to the

lighting variations, hazing, and color loss [59]. We tested

two solution strategies for this problem.

Primitive Estimator: A primitive estimator has been

employed using the depth sensor, the attitude estimation from

the IMU and the expected forward speed of the AUV (based

on the swimming pattern utilized). Though subject to drift

over long distances, this estimator has guided the Aqua2

vehicles for a variety of basic maneuvers and swimming

patterns. During operations with a known map, this primitive

estimator is utilized to track the planned trajectory.

SVIn: During operations in an unknown environment,

more accurate localization may be useful, in addition to the

required ability to detect nearby obstacles. Visual Inertial

state estimation, introduced by Rahman et al. [51] and

later extended to utilize depth measurements and loop-clo-

sures [60], is used for simultaneously localizing and mapping

nearby obstacles. The resulting point-cloud produced by

SVIn enables the AUV to navigate safely around obstacles.

2) Waypoint seeking: The optimization stage of the pro-

posed pipeline produces in a timely manner a path p, as

an ordered set of consecutive goal states that should be

sequentially achieved by the robot. A linear PD controller

proposed by Meger et al. [44] is utilized, which employs the

IMU and the depth sensor data. This closed-loop controller

accepts commands in the form:

com = 〈v, h, d, o〉 , (2)

in which v is the desired forward linear velocity, h is the

desired heave (that is, upward or downward linear velocity),

d is the desired depth to reach and o the desired orientation

for the robot to move in the world frame. The current

framework, for simplicity considers only purely forward

motion setting h = 0.

The PD controller controls the desired depth by linear

interpolation. Assuming that the current state of the robot

is sc and the current i goal position is pi in the world frame,

to guarantee smooth transitions that are bounded inside the

calculated safe swept-out volumes of the optimization stage,

the desired depth d is calculated as

d = zpi−1
+

(

1−
zsc
zpi−1

)

(

zpi
− zpi−1

)

, (3)

where zpi−1
is the depth of the previous achieved goal (base

case zpi−1
= sinit), zpi

the depth of the current goal, and zsc
is the current measured depth. The idea is to ensure the linear

change of depth from one position to the other and ensure

linear transitions similar to the ones assumed by Trajopt.

Regarding the desired orientation, the pitch is adjusted

automatically from the desired depth and the roll does not

affect the direction of the motion, thus only the computation

of the desired yaw oyaw is needed, with respect to the

translation error et = pi − sc. Given the position of the

robot, the yaw changes in such a way that the AUV will

always move towards facing the goal.

Lastly, assuming the possible deviation is bounded by

Dmin for a given speed and that the optimization was

successful, the AUV should safely navigate from one goal

to the next one. As a result of the above, given a threshold

of Dreached, the goal is declared reached, if the error et is

less than Dreached and a local minimum is detected, since

otherwise the robot will be sliding away due to disturbances.

(a) (b)

Fig. 4. Simulated trajectories executed by the robot in Gazebo. (a) An
environment with an narrow opening (the ceiling is not shown); (b) A
cluttered environment with multiple pipes.

IV. EXPERIMENTAL RESULTS

Extensive experiments were performed using the Gazebo

simulator, and in numerous deployments of the Aqua2 AUV

at two pools in our university, a shallow swimming pool

of dimensions 50m× 25m× 2m and a deep diving pool of

dimensions 25m×15m×4m. The main objective of the var-

ious experiments was to demonstrate the reliable navigation

functionality of Aqua2 using the proposed framework. In all

of the experiments the AUV had a constant speed of 0.4m/s
— the expected operational speed — and a bounded motion

with a minimum obstacle avoidance distance of Dmin =
0.6m. Obstacle avoidance and path length coefficients were

adjusted to relatively high values 200 and 100, respectively,

favoring safety over path length optimality, while the number

of waypoints was determined either by the distance from the

current position to the goal — placing a state every 1.5m —

or by the number of states provided by the Trajopt planner.

The experiments tested planning on a known map, with a

focus on efficient trajectories, and online, using the camera

for obstacle avoidance and frequent replanning.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Top-row shows representative photos from the real deployment in the pool for four different environments. The first three environments where in
the deep diving pool and the fourth in the shallower swimming pool: (a) AUV passes between the vertical obstacles and over the horizontal obstacle; (b)
the planner generates a 45

◦ roll for the AUV while passing between the two vertical obstacles and over the diagonal one; (c) AUV goes under the first,
over the second, and under the third horizontal obstacle, and the planner guides a flat roll; (d) AUV again has a 45

◦ roll passing around the three vertical
obstacles. The second row shows a view of the executed path in Gazebo for demonstration purposes.

A. Known Map — Offline Planning

During planning with a known map, the input map was

a set of geometric primitives (planes, boxes, cylinders, etc.)

and the iterative warm-starting process was used. All plans

were produced in less than half a second.

1) Simulated Environment: Two different environments

are presented here highlighting different challenges for Tra-

jopt. In the first environment, called the Window environ-

ment, two rooms, separated by a wall with an opening

(window) between them and open to one side demonstrates

path optimality; see Figure 4(a). The original path results in

a local minimum. After the iterative warm-starting method is

used the solution through the window is found. Furthermore,

for this experiment the AUV has to keep a horizontal pose

during motions that causes larger drifting from inertia. For

this purpose, in this single case we increased Dmin to 1m.

The second environment, called the Cluttered environ-

ment, focuses more on the capability of our method, inherited

from Trajopt, to minimize oscillation while passing through

a sequence of obstacles that need accurate motions with fast

orientation changes; see Figure 4(b). In this environment not

only was the roll adjusted during optimization adapting to the

motion, but also the Aqua2 is guided to pass in a parallel

motion between each pair of pillars, thus maximizing the

distance from both of them, for increased safety.

Safe navigation for the Aqua2 is achieved only if during

the motion the trajectory following method does not violate

the assumed clearance Dmin by the planning process. For

these challenging scenarios, where the robot changes orien-

tations fast, the oscillations are shown in Figure 6. The error

at time t, et, is calculated as the Euclidean distance of the

measured simulation odometry sc, to the line formed by the

previous pi−1 and the current local goal pi:

et =
|(sc − pi−1)× (sc − pi)|

|pi − pi−1|
(4)

(a)

(b)

Fig. 6. Error diagrams for the Room (a) and the Cluttered (b) environment,
as measured from the simulation. The red squares indicate the local goals
achieved, and the red line marks Dmin, where errors larger than that should
be considered unsafe.

Fig. 7. Navigating inside a shipwreck model in simulation. Model of
“Shipwreck, Hooe Lake, Plymouth” from Sketchfab.

2) Real: Four different environments were used at the two

pools in our university, demonstrating operations with the

Aqua2 AUV; see Figure 5. The placement of the obstacles

followed the created map used as input to the augmented



(a) (b) (c)

Fig. 8. (a),(b) show representative photos from the deployments in the pool in an unknown environment. Please note the plastic toys spread at the bottom
of the pool to produce detectable features in a featureless pool. (a) Avoiding two obstacles in the shallow swimming pool; (b) Avoiding two obstacles in
the deep diving pool. (c) presents the online map produced by SVIn [51] as a screenshot of RViz for the environments of (b), the robot avoid the first
cylinder, moves forward and then avoids the second, while using the features from the bottom of the pool to localize.

Trajopt planner. In the first environment, the Aqua2 was

forced to maintain an attitude facing the floor, a situation that

maximizes drift during yaw changes. The robot was able to

successfully avoid all the obstacles and quickly self-correct

its orientation; see Figure 5(a) for a image of the AUV during

operations and Figure 5(e) for an overview of the trajectory.

For the other three environments, the attitude of the AUV

was optimized by the planner. In the second environment

the robot avoided the two vertical pipes and passed over

the diagonal one; see Figure 5(b),(f). Three horizontal pipes

were used to force the AUV in continuous depth changes; see

Figure 5(c),(g). Finally, three vertical pipes resulted again in

obstacle avoidance with a roll at 45◦; see Figure 5(d),(h).

B. Sensor based Planning — Online

The deployment of the proposed framework online high-

lighted some computational challenges. First, the state esti-

mation consumes a large fraction of the computing resources.

Second, the most computationally expensive component of

the motion planning pipeline is the convex decomposition

step, using approximately 70 − 80% of the total planning

time. For efficiency, the convex decomposition parameters

were adjusted to produce many small convex polyhedra,

instead of a few large ones. A history of the observations

was kept to account for the limited field of view of the AUV.

In all cases the replanning frequency was on average at 1Hz.

1) Simulated Environment: The model “Shipwreck, Hooe

Lake, Plymouth” from Sketchfab1 was simplified and used

in the Gazebo simulator. For computational efficiency, no

texture was used in the simulator and the basic point-

cloud was acquired from the model using a resolution of

100 × 75 points. The AUV was guided through the inside

of the shipwreck, while avoiding the observed obstacles; see

Figure 7. The complex environment presented in Figure 4(b)

was used for online navigation resulting in similar results.

2) Real: Additional real pool experiments were conducted

using state estimation from the robust underwater SLAM

package SVIN [60] with additional sand-toys weighted and

placed on the floor to improve the odometry estimation

together with obstacles to test obstacle avoidance; see Fig-

ure 8. The same configuration was used with the online

simulation framework with the difference that the AUV was

1http://sketchfab.com/

constrained at constant depth to maintain tracking using the

features on the floor. The two environments, at the shallow

and deep pool, used two vertical obstacles resulting in

similar obstacle avoidance trajectories. Figure 8(c) presents

the overall recorded trajectory and features detected from

SVIn [60]. During one of the experiments the AUV’s motion

brought it towards a diver recording the experiment, who, to

the diver’s relief, was treated as another obstacle and was

avoided.

V. CONCLUSIONS

This paper demonstrated novel capabilities for underwater

navigation through cluttered spaces. The proposed frame-

work was able to plan and successfully execute efficient

trajectories, while avoiding obstacles and taking into account

the kinematic constraints of the vehicle, in both known and

unknown environments. Numerous simulations highlighted

the abilities of this agile platform to navigate in narrow

spaces. Experiments at the pool demonstrated the feasibility

of the proposed method and highlighted challenge.

Fig. 9. Aqua2 AUV moving through a wreck.

The presented results, combined with recent advancements

in the robustness of underwater state estimation [61] and with

new advanced gaits for the Aqua2 vehicles [43], will enable

future autonomous exploration of environments not previ-

ously accessible to robots, such as shipwrecks and caves.

For example, Figure 9 presents an enclosed environment at

the Pamir shipwreck near Barbados, for which no prior map

exists. In the past, an AUV was deployed there to perform

a simple straight line transect. Future work will test the

proposed approach in deployments to more fully explore

such environments.
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