
Auton Robot (2014) 36:365–381
DOI 10.1007/s10514-013-9364-x

Efficient complete coverage of a known arbitrary environment
with applications to aerial operations

Anqi Xu · Chatavut Viriyasuthee · Ioannis Rekleitis

Received: 20 July 2012 / Accepted: 8 August 2013 / Published online: 8 September 2013
© Springer Science+Business Media New York 2013

Abstract The problem of coverage of known space arises
in a multitude of domains, including search and rescue, map-
ping, and surveillance. In many of these applications, it is
desirable or even necessary for the solution to guarantee both
the complete coverage of the free space, as well as the effi-
ciency of the generated trajectory in terms of distance trav-
eled. A novel algorithm is introduced, based on the bous-
trophedon cellular decomposition technique, for computing
an efficient complete coverage path for a known environ-
ment populated with arbitrary obstacles. This hierarchical
approach first partitions the space to be covered into non-
overlapping cells, then solves the Chinese postman problem
to compute an Eulerian circuit traversing through these cells,
and finally concatenates per-cell seed spreader motion pat-
terns into a complete coverage path. Practical considerations
of the coverage system are also explored for operations with a
non-holonomic aerial vehicle. The effects of various system
parameters are evaluated in controlled environments using
a high-fidelity flight simulator, in addition to over 200 km
of in-field flight sessions with a fixed-wing unmanned aerial
vehicle.

Keywords Path planning · Coverage · Unmanned aerial
vehicles

A. Xu · C. Viriyasuthee · I. Rekleitis (B)
School of Computer Science, McGill University, Montreal,
QC, Canada
e-mail: yiannis@cim.mcgill.ca

A. Xu
e-mail: anqixu@cim.mcgill.ca

C. Viriyasuthee
e-mail: pvirie@cim.mcgill.ca

1 Introduction

The task of covering a bounded region of space is an essen-
tial component of many robotic activities, such as automated
painting, humanitarian de-mining, and search and rescue.
The importance and impact of the coverage task is high-
lighted, for instance, by the immense commercial success of
robotic vacuum cleaners, which have been integrated within
the modern household. These vacuuming robots use diverse
motion strategies, such as random walk and wall following,
to achieve coverage of the entire floor space.

In all of these applications, the problem of coverage is
defined as follows:

The robot must pass an end-effector or a sensor, which
might correspond to the entire body of the vehicle, over
all of the available free space within a bounded region.

For example, a de-mining robot must scan for the presence
of mines over the entirety of the terrain that is not obstructed
by obstacles (Acar et al. 2003). In such an application, it is of
paramount importance to ensure the completeness of cover-
age, meaning that no accessible area should be left uncovered
at the end of the coverage session. It is equally vital in virtu-
ally all domains for the coverage path taken by the robot to
be efficient, so as to reduce operational costs.

Coverage strategies can be categorized according to sev-
eral criteria. One important differentiating factor is whether
a certain technique requires access to a global obstacle map
of the environment prior to performing coverage, or if it is
capable of achieving coverage of an unknown environment.
This characterization is often differentiated as offline cover-
age versus online coverage (Choset 2001).

When operating in unknown environments, it is impos-
sible to enforce a criterion of optimality for deterministic

123



366 Auton Robot (2014) 36:365–381

Fig. 1 Our fixed-wing UAV landing after a coverage session

strategies. This can be shown by modeling a given cov-
erage strategy as a reactive decision tree, determining the
choices needed to satisfy a specific optimality criterion, and
then constructing a counter-example environment that, by
design, forces the strategy to make the opposite choice and
hence to violate optimality. Nevertheless, during coverage of
unknown environments, it is important in terms of efficiency
to avoid repeat coverage as much as possible.

On the other hand, an efficient coverage algorithm for
known environments should be able to generate a cover-
age path that completes the task in the minimum amount
of time or the shortest traveled distance, depending on the
specific requirements of the application domain. The dis-
tinction between distance and time has practical importance
when operating under the influence of external disturbances,
for example, when flying an aerial robot in strong wind con-
ditions. This distinction will be highlighted in the empirical
evaluations of the current work.

Another distinction relates to the ability to ensure com-
plete coverage, i.e. whether a strategy can guarantee that the
entire free space within a bounded region will be covered.
Complete coverage strategies often employ rigorous repre-
sentations of the free space, such as exact cellular decompo-
sitions (Choset and Pignon 1997), or approximate (e.g. grid-
based) cellular decompositions (Gabriely and Rimon 2001).

In this work we present an algorithm for complete and
efficient coverage of a two-dimensional known region with
arbitrarily-shaped obstacles. Our approach uses the boustro-
phedon cellular decomposition (BCD) method (Choset and
Pignon 1997) to divide the free space into non-overlapping
cells, and then uses the solution to the Chinese postman prob-
lem (CPP) (Guan 1962) to determine the optimal order in
which cells should be covered.

We extend the classical boustrophedon decomposition
method by allowing certain cells to be divided into half-cells,
so as to ensure that no individual cell will be covered twice.
Our solution also guarantees that the coverage session will

terminate at the starting location, which makes it convenient
for practical applications. As in most previous treatments of
coverage, our strategy assumes that the robot operates with
perfect localization.

Our coverage algorithm was first presented in Manna-
diar and Rekleitis (2010) and assumed originally that the
robot could perform in-place rotations. We have subsequently
extended this strategy in Xu et al. (2011) to accommodate the
general class of non-holonomic vehicles as well. Our system
represents the computed coverage path using a sequence of
waypoints, which is then realized by a robot-specific motion
controller that accounts for the vehicular dynamics of the
target platform. Because waypoint-based control can result
in less maneuverability compared to velocity-based steering,
our approach therefore cannot guarantee coverage optimal-
ity, in terms of minimal travel distance, for all possible types
of robotic vehicles.

The key contributions of our work include a polynomial-
time complete coverage algorithm for known two-dimen-
sional regions, and extensions of this core algorithm to
account for non-holonomic vehicular dynamics. In addition,
we present thorough experimental assessment of our sys-
tem to validate its correctness, as well as to investigate the
effects of various system parameters on the overall coverage
quality. Results are shown through over 200 km of in-field
flight sessions using a fixed-wing unmanned aerial vehicle
(UAV), see Fig. 1, in addition to extensive testing using a
six degrees of freedom (DOF) high-fidelity flight simulator
operating within various controlled environments.

2 Background

2.1 Coverage

The seed spreader algorithm (Lumelsky et al. 1990) describes
an efficient, deterministic, and complete coverage strategy
for simple regions, by having the robot move in back-
and-forth, “lawn mower”, sweeping motions. Choset and
Pignon introduced a rigorous extension to the seed spreader
algorithm under the name of BCD (Choset and Pignon
1997; Choset 2000), which guaranteed complete coverage
of bounded environments. The work was further developed
by Acar et al. (Acar et al. 2002; Acar and Choset 2002)
with experimental verification and for a variety of control
Morse functions (Forman 1998). The boustrophedon family
of algorithms ensures the complete coverage of an unknown
environment, although none of these algorithms provide any
guarantees on the optimality of the coverage path, in contrast
to our proposed approach.

Butler (1998) described a complete coverage strategy for
unknown rectilinear environments using a square robot with
contact sensing. This algorithm performed an online decom-

123



Auton Robot (2014) 36:365–381 367

position of free space, where each resulting rectangular cell
could be covered using back-and-forth seed spreader motions
that are parallel to the walls of the environment.

Huang (2001) employed a different strategy towards cov-
erage: the environment is partitioned with the objective of
minimizing the amount of rotation the robot has to per-
form, rather than minimizing the total traveled distance. Yao
(2006) subsequently proposed an improved strategy that fur-
ther reduced the total length of the coverage path, although
only illustrative examples were presented without a formal
proof of optimality. More recently, Kang et al. (2007) devised
an approach where a set of pre-calculated motion strategies
are chosen in order to minimize repeat coverage. All of the
aforementioned works presented their results in simulation,
and thus sidestepped pragmatic and implementation-related
concerns using actual robotic hardware.

Gabriely and Rimon (2001, 2002) employed a grid-based
approach for planning a complete coverage path using a span-
ning tree formulation. The primary requirement for a solution
to exist is that the environment must be decomposable into
a grid with a pre-determined resolution. For known terrain,
the grid-based coverage algorithms by Zheng et al. (2005)
guaranteed a performance of at most eight times the optimal
cost. Similar to Gabriely and Rimon (2002), coverage was
also achieved by partitioning the environment into a grid,
where each cell had the size of four footprints of the robot.
The coverage strategy presented in our work eliminates the
grid restriction on the environment and also guarantees that
the generated path will be efficient in terms of minimizing
path overlap over previously covered areas.

Agmon et al. (2008) extended the spanning tree techniques
discussed previously to achieve efficient grid-based cover-
age using a team of multiple robots. A similar multi-robot
spanning tree coverage formulation by Fazli et al. (2010)
was applied over a general cell-based representation of free
space.

Others have applied genetic algorithms (Jimenez et al.
2007) and visual landmarks (Weiss-Cohen et al. 2008) to
improve the speed of coverage. Paull et al. (2010) inves-
tigated coverage for underwater vehicles by applying an
information-theoretic path planner on a hexagonal grid repre-
sentation of free space. Easton and Burdick (2005) presented
a variant of the CPP to solve the problem of boundary cov-
erage, in which the objective was to cover the immediate
area around the boundary of obstacles within the environ-
ment. Additional coverage algorithms are outlined in Choset
(2001) and also in a more recent survey on multi-robot cov-
erage (Rekleitis et al. 2008).

The aerial robotics community has developed a number
of systems that either directly achieve coverage, or use simi-
lar techniques to address related applications such as search.
Gaudiano et al. (2003) investigated swarm intelligence and
UAV control, with extensions to collaborative aerial cov-

erage. Agarwal et al. (2006) proposed a multi-UAV cov-
erage solution for a rectilinear polygonal environment that
focused on assigning partitions of the environment propor-
tionally based on each vehicle’s capabilities, although com-
puting explicit trajectories was not within their scope. Maza
and Ollero (2007) proposed a similar technique for distrib-
uted coverage of a polygonal environment with no obstacles.
Their algorithm divided the free space into simple regions,
and focused on selecting a per-region coverage pattern that
minimized the number of turns.

Ahmadzadeh et al. (2006a,b) investigated the problem of
coverage-related aerial surveillance, with the goal of min-
imizing the amount of uncovered area given specific time
constraints. Their work addressed explicit concerns for vehi-
cle dynamics and sensor range, and explored a wide variety
of different solutions to achieve surveillance. Their partic-
ular problem formulation precluded, however, any analysis
on the completeness of the terrain coverage. In related work,
Cheng et al. (2008) presented a solution to 3-D complete
coverage by projecting the environment into non-planar sur-
faces. Their method also focused on designing a time-optimal
trajectory within each surface manifold, which is devoid of
obstacles.

Several solutions to search-related problems generated
motion strategies that can be readily extensible to achieve
coverage (Furukawa et al. 2006; DasGupta et al. 2006). These
methods employed probabilistic models of the abstract prob-
lem to ensure robustness, however their use of approximation
techniques could potentially impede coverage efficiency in
practical implementations.

In the literature, the term ‘coverage’ has also been applied
to the problem of distributing a group of mobile sensor units
within an environment such that their positioning achieves
maximum coverage of an area of interest. Most of these
approaches assume that the mobile units do not move after
reaching their desired positions, unless the configuration
of the environment is altered during runtime. Cortes et al.
(2004), and Martinez et al. (2007) proposed a sensor unit
placement strategy that is based on utilizing the centers
of Voronoi cells. Howard et al. (2002) employed artificial
potential fields to force sensor units to move away from
each other in order to increase the total coverage area. More
recently, Schwager et al. (2009) devised an unifying scheme
for multi-robot coverage which combines the previous tech-
niques. The primary emphasis of these works is on deter-
mining the end-poses for a team of sensor units, with sur-
veillance or similar applications in mind. In contrast, motion
planning coverage strategies, such as the one presented in this
paper, focus on generating a motion path through the envi-
ronment that increases the coverage of a given environment
over time, and are geared towards a different set of applica-
tions such as de-mining, vacuum cleaning, and search and
rescue.

123



368 Auton Robot (2014) 36:365–381

2.2 Graph theory

Various algorithms from graph theory have been applied in
robotics to guide exploration (Meger et al. 2008), mapping
(Rekleitis et al. 2001; Choset and Burdick 1995), and cover-
age (Choset 2000). Edmonds and Johnson (1973) presented
an overview of a number of graph algorithms that are directly
applicable to the problem of complete and efficient coverage
of a known environment. Several of these concepts presented
in Edmonds and Johnson (1973) are used as core components
to our cell-based coverage technique, and are outlined next.

An Eulerian circuit is a cyclic graph traversal that visits
every edge in a given graph exactly once, and terminates at
the starting vertex. Euler demonstrated that a necessary and
sufficient condition for the existence of such a cycle is that all
vertices must have an even degree—such graphs are termed
Eulerian. The task of computing an Eulerian circuit is related
to the CPP, which aims to find the shortest closed path that
traverses through every edge at least once. If a graph satis-
fies the Eulerian property, then all of its Eulerian circuits are
solutions to the CPP. In contrast, for non-Eulerian graphs,
a standard approach to solving the CPP is to first duplicate
certain edges in the graph in order to satisfy the Eulerian
property, and then choose one of the resulting Eulerian cir-
cuits as the solution.

Different strategies can be applied to determine which
edges to duplicate, with the objective of minimizing the sum
of individual costs associated to every edge in the result-
ing graph. The constraints and objective function of one
such strategy based on a linear programming formulation
is described in Edmonds and Johnson (1973). An alterna-
tive group of edge duplication strategies use algorithms from
matching theory: one straight-forward approach is to com-
pute the pairwise shortest paths between every node of odd
degree in the original path, and then identify edges to be dou-
bled based on the total costs for each of the competing path
options.

After duplicating the selected edges, there are multiple
methods to generate an Eulerian circuit. A simple but inef-
ficient technique is to compute a connected edge sequence
by greedily visiting and then removing contiguous edges that
do not render the graph disconnected; this process continues
until all edges have been removed. More efficient algorithms
operate by iteratively constructing disjoint cycles that col-
lectively span all the edges, and then merging these cycles
together.

3 Efficient complete coverage algorithm

This section presents an algorithm for generating a piecewise-
linear path that results in efficient and complete coverage of
a known, bounded 2-D environment with arbitrary obstacles.

The proposed approach operates hierarchically in two stages:
first, an offline analysis is carried out by decomposing all the
free space to be covered into cells and computing a traver-
sal ordering through these cells using the solution to the CPP.
Second, an online per-cell coverage planner produces motion
strategies to completely cover individual cells based on the
robot’s current state, while following the previously com-
puted cell-level cyclic path. Each of these components will
be described in detail below.

3.1 Boustrophedon cellular decomposition

The input to the offline analysis stage is a binary raster-
ized obstacle map, where black and white pixels differentiate
between obstacles and free space that needs to be covered.
The free space is partitioned into cells using the BCD (Choset
and Pignon 1997), which was originally applied to achieve
coverage of unknown environments. BCD is a type of Morse
decomposition that perceives the environment as a sequence
of columns, termed slices; in our setup each slice consists of
a 1-pixel wide vertical strip of the map. Each slice is com-
posed of one or more non-overlapping sections of free space
that are separated by obstacles, and the total number of sec-
tions in a slice is called the slice connectivity count. As these
disjoint free space sections are identified, cells are formed
by grouping connected regions of free space spanning across
multiple slices. Points on obstacles which cause a change in
the connectivity count are called critical points (Acar and
Choset 2002), as illustrated at the left end of the obstacle in
Fig.2a.

Algorithmically, cells and critical points are determined
by scanning a slice virtually across the obstacle map and
looking for changes in the slice connectivity count; without
loss of generality, the direction of this scan is defined along
the horizontal axis and is termed the coverage direction. In
this work the notion of a critical point has been extended to
include line segments as well, since they can also be respon-
sible for causing a change in the connectivity within adjacent
slices. Figure 2b shows the boustrophedon decomposition for
a simple environment.

A common assumption in most cellular decomposition
methods is that the connectivity across two adjacent slices can
change by at most a single critical point. Based on our slice-
scanning algorithm, this is equivalent to assuming that no two
critical points can be aligned vertically, which is often vio-
lated in structured or indoor environments. Thus, care must
be taken to properly handle the coverage of zero-width cells
that result from vertically-aligned critical points.

After applying the BCD, critical points and cells are
encoded respectively as vertices V and edges E of a graph
representation G = 〈V, E〉 known as the Reeb graph (Acar
and Choset 2002; Fomenko and Kunii 1997); see Fig. 2b. The
Reeb graph captures the connectivity information between

123



Auton Robot (2014) 36:365–381 369

(a)

(b)

Fig. 2 a The entire free space is partitioned into cells by identifying
critical points (CP), which are point- and line-intersections with obsta-
cles that are perpendicular to the coverage direction. Per-cell coverage
is achieved using the seed spreader pattern, i.e. back-and-forth motions
composed of parallel sweep lines that are uniformly separated by the
coverage footprint width. b Critical points and cells are mapped respec-
tively into vertices and edges of the Reeb graph structure. Critical points
consist either of point intersections, e.g. CP 2 & CP 3, or line segment
intersections, e.g. CP 1 & CP 4

vertices and edges, which is used to compute a cyclic path
through all the edges (i.e. cells). Every vertex V in the Reeb
graph has a degree of one or three, since by construction
each corresponding critical point is connected to exactly one
or three cells.

3.2 Construction of the Eulerian circuit

After partitioning all available free space into cells using the
BCD, the resulting Reeb graph is then used as input to the
CPP. The goal of CPP is to compute a cyclic path that tra-
verses through all the edges at least once. To ensure that the
solution to the CPP will be an Eulerian circuit, i.e. a traver-
sal that moves through every cell exactly once, certain edges
in the Reeb graph must be duplicated. It has been shown
that no edge needs to be doubled more than once (Edmonds

and Johnson 1973). The solution to the CPP consists of two
stages: first identify and duplicate a subset of edges, and then
find an Eulerian cycle through the updated graph. The first
stage can be posed as the following integer linear program-
ming formulation:

Minimize z =
∑

e∈E

(cexe)

subject to the following constraints:
∑

e∈E

(anexe) − 2wn = kn, ∀ n ∈ V ;

xe ∈ Z+, ∀ e ∈ E;
wn ∈ Z+, ∀ n ∈ V ;

where
∑

e∈E (anexe) is the number of all the edges connected
to the node n ∈ V . For the result to be Eulerian, an odd
number of edges must be connected to nodes with odd degree
and an even number of edges must be connected to nodes with
even degree; ane is 1 if node n is connected to edge e, and 0
otherwise; xe is the total number of copies of edge e in the
solution; wn is an integer variable that forces

∑
e∈E (anexe)

to be odd for odd nodes and even for even nodes; kn is 1 for
nodes with odd degree, and 0 otherwise; ce is a real number
representing the cost of edge e, where an edge with high cost
would be less likely to be duplicated.

This integer programming formulation can be solved in
polynomial time since it satisfies the conditions of total dual
integrality (Edmonds and Johnson 1973).

It is worth noting that edges in the Reeb graph correspond
to free space cells in the obstacle map. A traversal of the
Eulerian circuit will follow every edge of the Reeb graph,
which means that the robot will cover every cell of the free
space and therefore achieve complete coverage of the envi-
ronment. To prevent repeat coverage and to improve effi-
ciency, cells corresponding to duplicated edges are divided
into non-overlapping half-cells. This strategy ensures that
no free space area will be covered more than once. One
straight-forward approach for splitting cells is to divide along
the mid-points between the top and bottom cell boundaries.
Unfortunately, because the mid-points at the left and right cell
extremities do not necessarily correspond to the locations of
critical points, in certain cases the robot will be forced to
inefficiently backtrack through previously covered area after
reaching a half-cell’s end point.

A more efficient strategy for splitting cells operates by
interpolating the ratio of the lengths between the top and
bottom portions of each vertical slice through the cell. This
method ensures that both half-cells will be physically con-
nected to the critical points of their parent cell. The interpola-
tion process is naturally constrained on the left and right cell
extremities by the fixed positioning of the two critical points,
and therefore guarantees that the robot will never traverse

123



370 Auton Robot (2014) 36:365–381

through a half-cell when moving from the other half-cell to
a critical point. The results of this cell-splitting strategy can
be observed in Fig. 3a.

The edge cost ce is a configurable parameter that deter-
mines which edges should be duplicated, so as to ensure that
the integer programming solution will produce an Eulerian
circuit. It is inefficient to split narrow cells since that would
introduce an excessive number of additional turns in the cov-
erage path. It is also preferable to avoid splitting small cells
whenever possible. Based on these two criteria, the edge cost
is chosen to be:

ce = (cell width)2

cell area
= cell width

average height o f cell

The final output of the offline analysis stage is an Eulerian
circuit that traverses through all connected cells in the envi-
ronment. Figure 3 illustrates this cell-level traversal ordering
for both an outdoor region and an indoor environment.

3.3 Per-cell coverage pattern

After completing the offline analysis, our algorithm gener-
ates motion paths that cover each individual cell, following
the order indicated by the Eulerian circuit. This hierarchical
path-generation approach allows per-cell coverage trajecto-
ries to be computed dynamically during an actual coverage
session, which is beneficial in domains where the efficiency
and completeness properties may be affected by dynamically
changing factors such as wind or other environmental con-
ditions.

Per-cell coverage can be achieved efficiently using back-
and-forth sweeping motions, which are conventionally
referred to as Boustrophedon, Seed Spreader, or Lawn mower
patterns, and are well documented in the literature (Lumel-
sky et al. 1990; Choset and Pignon 1997; Acar and Choset
2002). This trajectory can be represented as a set of way-
points forming parallel and uniformly spaced sweep lines, as
illustrated in Fig. 2a. The resulting path completely sweeps
through the cell, starting from one critical point and ending at
the other. Note that these sweep lines are perpendicular to the
coverage direction, which is the orientation of the coverage
progression as the robot travels through free space.

A crucial parameter of the seed spreader algorithm is the
coverage footprint, which measures the width between con-
secutive sweep lines. The footprint width should ideally be
adjusted to match the width of the sensor that is used to
achieve coverage, so as to prevent gaps or overlaps in the
sensor data collected during consecutive sweep lines. For
example, if a UAV is to record atmospheric readings inside
a bounded region of space, then the footprint width should
be computed as a function of the atmospheric sensor’s range.
Note that for non-circular sensor swaths, the sensor width is
defined to be the minimal horizontal width of the swath as it

traverses vertically through a sweep line, which accounts for
the worst-case setup.

3.4 Analysis of completeness

The proposed algorithm guarantees the complete coverage
of the free space FS. We will prove the completeness of the
coverage in three steps. First, we will prove that the BCD
completely divides the free space in cells. Second, we will
show how the solution of the CPP on the Reeb graph guaran-
tees that every cell is covered and finally, we will prove that
every cell is completely covered using the cycle algorithm
(Acar and Choset 2002), a variant of the lawnmower pattern.

Lemma 1 The BCD is an exact cellular decomposition of
the bounded free space.

Proof ∀p ∈ FS, p is encountered only once by the slice
during the construction of BCD. The placement of p on the
slice assigns the point to a single cell (Acar and Choset 2002).
Therefore, every point in FS will be associated with one cell.

��
Definition 1 [Reeb graph]: is an one to one representation
of the BCD, where each cell is represented by an edge, and
each critical point is represented by a vertex of the graph.

Lemma 2 The solution of the CPP results in covering every
cell of the BCD.

Proof The solution of the CPP is an Eulerian circuit that
traverses every edge at least once and not more than twice.
When an edge of the Reeb graph is traversed, the robot covers
that cell. Consequently, each cell will be covered at least once.

��
By construction of the algorithm, doubled edges represent

two half cells, each one of them covered when the corre-
sponding edge is traversed.

Lemma 3 Each cell is covered completely when the cycle
algorithm is used.

Proof By construction, see Acar and Choset (2002), the
lawnmower pattern when performed over the free part of the
configuration space (Choset et al. 2005) FS, will produce
complete coverage. ��
Proposition 1 The proposed algorithm will result in the
complete coverage of the free space.

Proof Let us assume that the algorithm did not produce a
complete coverage pattern, therefore, a point p ∈ FS is not
covered during the execution of the algorithm. A point p that
is not covered results from either p was not assigned to a cell,
contradicting Lemma 1; or the cell that p was assigned to was
not covered, contradicting Lemma 2; or during coverage of
the cell that point was not covered, contradicting Lemma 3.

��

123



Auton Robot (2014) 36:365–381 371

(a) (b)

Fig. 3 Results of the offline analysis stage are shown for two differ-
ent environments: a A 13 km×10 km outdoor region, where darkened
areas delineate obstacles, white lines depict cell boundaries, and red
curves along with cell numbers indicate the Eulerian circuit. b An indoor

office space, where black areas delineate obstacles, dashed lines depict
cell boundaries (half-cells are not shown), solid numbered edges indi-
cate the Eulerian circuit, and dotted numbered edges represent dupli-
cated Reeb graph edges (Color figure online)

In summary, the completeness of our coverage algorithm
is ensured by the construction of both the cell-level traversal
ordering and the per-cell coverage pattern.

3.5 Analysis of efficiency

The algorithm presented above produces a complete cover-
age trajectory that systematically covers each cell, or half-
cell, in the boustrophedon decomposition of the free space.
Nevertheless, a number of fundamental and practical fac-
tors will affect the optimality of the resulting coverage path,
where optimality is defined as minimal path length. This sec-
tion discusses properties relating to efficiency and optimality
that are induced by the two stages of the proposed coverage
algorithm, namely the cell traversal ordering and the per-cell
coverage pattern.

3.5.1 Efficiency of the cell traversal ordering

After covering a cell, the robot may need to backtrack in
order to re-position itself at a reachable corner of the next
cell to be covered. This problem arises due to a disconti-
nuity in either the top or bottom boundary curves between
two adjacent cells, which might in turn be caused by a line-
segment-based critical point. One example of this phenom-
enon can be observed in Fig. 3a: if the robot finished covering
cell 4 at the cell’s bottom-right corner, then it would need to
backtrack up to the lower-left corner of cell 5 in order to con-
tinue coverage. Note that this backtracking process can cost
at most one extra sweep line in length.

For certain cell configurations, some of the backtracking
can be avoided by switching the order of traversal through
two loops in the Eulerian circuit that are connected at the
same critical point. Building on this strategy, one option to
minimize repeat coverage is to assume a static footprint width
and find the best configuration out of all possible Eulerian cir-
cuits, i.e. the one with the shortest length disjunctions in the
concatenated path. Unfortunately, enumerating through all
possible Eulerian circuits is a #P-complete problem (Bright-
well and Winkler 2004), and even then the best configura-
tion may still contain disjunctions. Given practical consider-
ations, our implementation dynamically selects which sub-
cycle in the Eulerian circuit to traverse next when given a
choice, so as to greedily minimize the amount of backtrack-
ing required.

It is important to observe that our coverage formulation
solves for the optimal cell traversal ordering in an efficient
manner, by mapping cells to edges and critical points to ver-
tices. This can be contrasted to the alternative mapping of
cells to vertices and critical points to edges that is employed
by a number of other coverage formulations in the literature.
In our representation, the optimal traversal ordering is equiv-
alent to the Eulerian circuit, and as discussed previously, can
be computed efficiently in polynomial time by solving the
CPP (Edmonds and Johnson 1973).

3.5.2 Efficiency of per-cell coverage pattern

It is known that the footprint width of the seed spreader
algorithm, i.e. the spacing between consecutive sweep lines,
can affect the overall quality of coverage (Mannadiar and

123



372 Auton Robot (2014) 36:365–381

Rekleitis 2010). Therefore, the number of sweeps required to
cover a cell can be calculated by dividing the length of the cell
by the footprint width. Since the remainder of this division is
usually not zero, the last sweep is thus often narrower than the
coverage footprint width, which results in some repeated cov-
erage. To address this concern, the footprint width is reduced
to ensure that the cell’s area can be covered using an integer
number of sweep lines. Although this strategy reduces cov-
erage efficiency by increasing the overall trajectory length,
its benefits include increased robustness of the coverage pat-
tern to small motion perturbations, and even distribution of
the redundant coverage across all of the sweep lines in the
generated path. Furthermore, the increased overlap in sensor
readings may also be beneficial to post-processing activities
such as mosaicking and temporal data filtering. Section 4.1
will discuss practical heuristics for minimizing the amount
of coverage overlap, by considering different orientations for
the coverage direction.

3.5.3 Asymptotic coverage optimality

As discussed above, the cell traversal ordering and the per-
cell coverage pattern can each generate a partially redundant
sweep line in the worst case. Although these sweep lines are
detrimental to the coverage optimality for a given environ-
ment and setup, the percentage of repeat coverage per cell
will asymptotically go to zero as the ratio of all area to foot-
print goes to zero, e.g. as the size of the environment grows.
Consequently, the proposed coverage algorithm is asymptot-
ically optimal.

More formally, let us consider the case of a single cell with
an length w, the distance along the direction of coverage,
average height h, and a sensor of radius r , which results in
a footprint width d = 2 × r . The number of stripes required
to cover this cell are N = �w/d	.

Definition 2 redundant coverage ratio RC R is the ratio
of the distance traveled in the worst case, over the minimum
distance required to cover the cell. RC R = (N+2)×h

N×h

Lemma 4 As the area to be covered increases asymptoti-
cally in relation with the footprint width (d), RC R decreases
asymptotically to 1.

Proof By definition RC R = (N+2)×h
N×h = (N+2)

N = 1 + 2
N .

Therefore, lim
N→∞ RC R = 1. ��

4 Aerial coverage

This section presents a number of pragmatic aspects to con-
sider when deploying the proposed coverage algorithm on
a vehicle with non-holonomic constraints. The computed

piecewise-linear waypoint trajectory cannot be readily exe-
cuted by a non-holonomic vehicle, such as an automobile, a
fixed-wing aircraft, or a boat, since these vehicles cannot reli-
ably carry out the on-the-spot rotations required by these tra-
jectories. Therefore, supplementary motion control strategies
are needed to ensure that such robotic vehicles will be able
to follow the specified coverage path in its entirety. Another
important aspect to consider is the effect of environmen-
tal factors, such as wind or current, for airplanes and boats
respectively, which may cause unexpected deviations from
the designated path. The coverage efficiency can be improved
in this case by choosing an appropriate direction of cover-
age while taking these factors into consideration. Changing
the coverage direction may cause the cell decomposition to
produce a different result, which may subsequently lead to a
lower quality coverage trajectory, where quality relates to the
total path length and the total number of turns in the path. In
the following sections, these pragmatic considerations will
be discussed for the target application of visual terrain cov-
erage using a fixed-wing aerial vehicle.

The task of visual coverage using an aerial robot consists
of gathering “bird’s-eye view” pictures of the terrain within a
bounded region of space. In this setup, the coverage footprint
width depends on the camera’s field of view, on the UAV’s
current altitude, and, optionally, on the amount of image over-
lap needed to reliably stitch the collected images together
during post-processing. In these types of aerial applications,
one typically deals with environments with known obstacles,
since satellite maps of the terrain can be readily obtained.

During aerial operations, the definition of obstacles is
more flexible compared to the terrestrial context. Certain ter-
rains and structures such as mountains, high-rise buildings,
and even restricted airspace still appear as (pseudo-) physical
obstructions. More commonly however, emphasis is given to
application-specific areas for which coverage is not required:
for example, during a wilderness search operation for a lost
hiker, villages and large bodies of water do not need to be
covered since they are irrelevant to the search task. In the
following sections, only the latter type of obstacles will be
considered.

4.1 Direction of coverage

The BCD algorithm presented in Sect. 3.1 scans through the
obstacle map along a specific orientation known as the cov-
erage direction. This parameter directly impacts the shape
of the cells resulting from the BCD, and subsequently, both
the length of sweep lines as well as the number of turns in
the seed spreader pattern. Thus, the quality of the trajectory
can be improved by searching through different orientations
of the coverage direction, while attempting to minimize the
number of sweep lines and maximize the individual lengths
of each sweep line. This can be especially desirable when

123



Auton Robot (2014) 36:365–381 373

Fig. 4 Results of offline analysis using a the default direction of coverage, and b after aligning with the dominant axis of the free space,
demonstrating a difference in the cell shapes produced by the BCD

working with non-holonomic vehicles (Huang 2001), since
they cannot perform in-place rotations and also exhibit poor
turning dynamics in general. Figure 4 illustrates that chang-
ing the direction of coverage prior to the construction of the
BCD can reduce the presence of sharp cusps and produce
more elongated cells, thus decreasing the number of turns.
We next present three different strategies for selecting the
direction of coverage, each of which rotates the map before
running the BCD algorithm.

The first strategy for choosing a favorable coverage direc-
tion is inspired by scenarios that require the robot to navigate
through a rectilinear (“Manhattan-like”) environment, where
most obstacles are aligned at right angles with each other. If
the coverage direction is not aligned with these obstacles,
then the boustrophedon decomposition process will generate
small triangular cells for many of the room corners in the
environment. This is problematic because some of cells may
be too small to be covered efficiently using the seed spreader
pattern; in these cases, skipping over such cells would lead to
tiny amounts of missed coverage. This issue can be mitigated
by aligning the direction of coverage to the dominant edge
orientation for obstacle boundaries prior to decomposing the
environment. In outdoor aerial coverage applications, this
alignment strategy can produce notable improvements in the
coverage quality when operating above man-made terrains
such as farm plots or cities, which often contain straight or
near-straight obstacle boundaries.

Another related strategy is to align the direction of cover-
age with the distribution of the free space, under the assump-
tion that the length of the resulting sweep lines will be maxi-
mized along the dominant axis of the free space for environ-
ments with either few or small obstacles. Specifically, given
the eigenspace decomposition of the entire reachable free
space, the coverage direction is set to be orthogonal to the
dominant eigenvector. This ensures that cells produced by
the BCD are mostly elongated and parallel to the coverage

direction, which in turn minimizes the number of turns and
also leads to longer sweep lines in the coverage path. This is
illustrated by the sample decomposition shown in Fig. 4b.

The third strategy directly addresses effects of certain
environmental disturbances that can affect the quality of cov-
erage: for example, when operating within a windy zone,
strong crosswind can constantly divert the UAV from the
designated sweep line trajectories, and will lead to uncov-
ered gaps in the sensor readings. In these situations, aligning
the direction of coverage to be perpendicular to the average
wind heading prior to launch will shift most of the crosswind
force into headwind. Although it may consequently be more
challenging to fly against stronger headwinds during parts
of the coverage session, this solution mitigates the presence
of course deviations leading to violations of coverage com-
pleteness.

4.2 Non-holonomic vehicle control

The coverage trajectory produced by our algorithm is rep-
resented as a piecewise-linear path, or equivalently as a
sequence of waypoints. Since this path contains point-based
turns, some of which may be at very sharp angles, it is best
geared towards a holonomic robot, i.e. one that can per-
form in-place rotations. In contrast, non-holonomic vehicles
such as fixed-wing UAVs lack the maneuverability needed
to accurately follow the designated coverage path in its cur-
rent waypoint-based format. If a robot is incapable of tra-
versing exactly through the designated trajectory, then the
sensor readings collected during coverage may miss certain
portions of the desired coverage area. To address this con-
cern, our system employs a robot-specific motion controller
to implement the computed coverage path, and in the case
of a non-holonomic robot, additional motion segments are
used to guide the vehicle along the designated path accurately
and efficiently. Although the following steering strategies are

123



374 Auton Robot (2014) 36:365–381

0 100 200 300
0

100

200

300

Distance (m)

D
is

ta
nc

e 
(m

)

(a)

0 100 200 300
0

100

200

300

Distance (m)

D
is

ta
nc

e 
(m

)

(b)

Fig. 5 Strategies for steering non-holonomic vehicles along the des-
ignated path (in red): follow waypoints from the path directly using
a a greedy path planner, or b by adding curlicue orbits at corners (Color
figure online)

presented for the control of fixed-wing aircrafts, they can also
be readily extended to other non-holonomic robots such as
autonomous airboats, as discussed in Girdhar et al. (2011).

Certain robots, including fixed-wing aircraft, offer inte-
grated motion planners based on waypoint commands. These
planners typically employ a greedy strategy, by issuing a
maximum turning rate until the vehicle aligns its heading
to the destination. Figure 5a illustrates this behavior as the
vehicle turns around to transition between consecutive sweep
lines. Unfortunately, implementing the generated coverage
path using a greedy path planner directly may compromise
coverage completeness. In the illustrated example, although
the UAV had a minimum turning radius of 45 m, the greedy
planner caused a course deviation of about 80 m at the begin-
ning of the second sweep line. One straight-forward method
to resolve this issue is to reduce the footprint width in order to
compensate for these deviations. Unfortunately, this uniform
increase in sensor overlap would also result in redundant and
wasteful coverage efforts.

Figure 5b depicts an alternative corner-steering strategy
that allows non-holonomic robots to remain on the desig-
nated coverage path. Rather than carrying out a turn directly,
the robot is steered in a circular orbit, in order to align it with
the upcoming line segment. The orbit’s size is determined
by the vehicle’s minimum turning radius, and the orbit is
positioned appropriately to be tangential to the two line seg-
ments forming the turn. This curlicue strategy is well suited
for most turning angles, although it may not be required for
mild turns where the robot can adjust its course with negli-
gible deviation.

5 Experimental validation

This section presents extensive evaluations of our efficient
complete coverage solution. These evaluations are meant to
validate the efficiency of the realized coverage trajectory,
as well as to investigate the impact of various system para-
meters on the quality of coverage. Our evaluation is carried

Fig. 6 Our robotic platform is a commercial fixed-wing UAV with an
on-board autopilot microprocessor and a gimbal-mounted camera

out using three separate methods: an exhaustive analysis of
the waypoint-based path produced by our two-stage cover-
age algorithm; an assessment of aerial coverage in controlled
environments carried out using the Aviones (2013) 6-DOF
UAV simulation software; and finally, through field trials with
a fixed-wing UAV, demonstrating the correctness of our entire
coverage system in practical field deployment scenarios.

In these evaluations, performance is quantified by the total
trajectory length, as well as the elapsed time for each cover-
age session. Although these two metrics are correlated, the
total flight distance provides a more theoretical assessment
of the coverage path, whereas the flight duration relates to
the practical quality of a given coverage session, since it is
influenced by circumstantial factors like robot battery levels
and external conditions such as wind force.

5.1 Hardware platform

The UAV shown in Fig. 6 is a rigid body fixed-wing plane
commercially available from Procerus� Technologies.1 Its
1 m wingspan is built using expanded polypropylene foam,
which is useful for absorbing impact upon touchdown. A
brushless electric motor powered by lithium polymer batter-
ies can drive the UAV at average ground speeds of 14 m/s and
for flight durations of up to 30 min.

This vehicle is controlled by an on-board autopilot micro-
processor, which receives instructions from the ground con-
trol software wirelessly. The autopilot is connected to various
sensors, including a three-axis accelerometer, a three-axis
gyroscope, a pitot tube, and a GPS unit. In addition, an on-
board camera attached to a pan-tilt gimbal device transmits
live analog video at 30 Hz via a separate radio frequency. This
camera is equipped with a lens that has a standard 46◦ field
of view. The UAV can operate in a number of modes, rang-
ing from joystick-based manual control to fully autonomous
waypoint-based navigation.

1 www.procerusuav.com.

123

www.procerusuav.com


Auton Robot (2014) 36:365–381 375

The proposed coverage algorithm is implemented in C++
under a Linux environment on-board a 1.66 GHz dual-core
laptop, and communicates via Ethernet with a second com-
puter acting as the UAV’s ground control unit. During flight,
the gimbal’s orientation is continuously regulated, in order
for the camera to be oriented parallel with the ground plane.
This removes the need to transform the acquired images using
projective geometry and also establishes a uniform pixel den-
sity. The reader is referred to Xu and Dudek (2010) for details
on the gimbal control algorithm.

All of the UAV experiments presented in this paper were
conducted at fixed altitudes, so as to facilitate the analysis
of results. It is important to note however that the online
nature of our per-cell coverage strategy is perfectly capable
of adjusting the coverage footprint dynamically, in order to
optimize the seed spreader pattern based on the UAV’s alti-
tude at the beginning of each cell.

5.2 Large scale simulation

This experiment evaluates the scalability of our algorithm
by carrying out complete aerial coverage sessions over a
large 13 km×10 km environment, filled with many curved
and polygonal obstacles in both convex and concave shapes.
The two sessions shown in Fig. 7 were carried out in sim-
ulation, because our UAV platform lacked sufficient battery
capacity to sustain such a flight, and also more importantly to
ensure that the greedy and curlicue motion controllers can be
evaluated under a controlled environment without any exter-
nal disturbances such as wind or rain. Nevertheless, to remain
faithful to our UAV’s capabilities, the coverage footprint was
calculated based on a typical operational altitude of 300 m
and with our camera’s field of view of 46◦.

As discussed in Sect. 4.2, a naive way to compensate for
the potential missed coverage caused by executing the greedy
path planner on the computed coverage path is to decrease
the effective coverage footprint width. Given the operational
altitude and camera settings, and knowing that our UAV’s
minimum turning radius in the absence of wind is approx-
imately 50 m, the effective coverage footprint should ide-
ally be set to 70 % of the original width, in order to prevent
gaps in the sensor readings. Unfortunately, simulation results
using this setting nearly doubled the length of the original
path, even in the absence of wind. In light of this result,
we opted to compare the two control techniques using the
same footprint width. This effectively compares the differ-
ence in performance between a non-holonomic vehicle such
as a fixed-wing aircraft executing curlicue patterns, versus a
holonomic robot such as a helicopter following the original
waypoint-based path. Since this experiment was conducted
using the fixed-wing UAV simulator, the latter results are
only an approximation of the true performance of a holo-
nomic vehicle.

Fig. 7 Simulated coverage paths for a 13 km×10 km region at 300 m
altitude with no wind. Star denotes beginning and end of flight. The
UAV traveled a 590.9 km in 11 h 56 m using the greedy path planner,
and b 740.7 km in 14 h 56 m using the curlicue strategy

The flight paths recorded from both sessions are shown
in Fig. 7. Under ideal experimental conditions, the elapsed
times and total flight distances both indicate a 25 % increased
penalty for using the curlicue strategy. Depending on the
target application domain, it may be reasonable to accept this
increase in additional resources needed to achieve complete
coverage of a large-scale environment.

For the flight session using the curlicue controller, there
were multiple occasions where the UAV unnecessarily per-
formed curlicue turns at corners that were located between
two free space cells. This can be observed from the flight
trajectories in Fig. 7, and notably by comparing the flight
behavior along the boundaries of half-cells on the right side
of the environment. One simple heuristic to prevent such
redundancies would be to switch to using the greedy way-
point controller at these corners, since the portions of missed
coverage resulting from a given turn would be covered later
while moving through the adjacent cell.

123



376 Auton Robot (2014) 36:365–381

Table 1 Simulated coverage results for a 1 km×0.6 km region at 150 m
altitude operating under different coverage directions

Alignment of coverage direction

Random Obs. edges Free space Wind

Time (no wind) 21 m 54 s 21 m 59 s 21 m 26 s –

Dist. (no wind) 13.61 km 13.69 km 13.36 km –

Time (7 m/s wind) 28 m 57 s 25 m 23 s 27 m 13 s 27 m 39 s

Dist. (7 m/s wind) 15.14 km 13.24 km 14.46 km 15.19 km

Finally, it is worth noting that the penalty for using the
curlicue controller will depend on the size of the coverage
region. This can be seen by comparing the length of the sweep
lines with that of the circular orbits introduced by the curlicue
controller, leading to the conclusion that this controller would
be inefficient for small-sized environments. Consequently,
in these situations it may be more cost effective to decrease
the effective footprint width and use the greedy waypoint
controller instead.

5.3 Alignment strategies for coverage direction

The best direction of coverage, assuming that such a value
exists, is highly dependent on the obstacle layout for a given
environment. In order to obtain some intuition on the overall
effect of different alignment strategies previously introduced
in Sect. 4.1, several coverage sessions using the Aviones
flight simulator were conducted over a simple terrain with
one obstacle, while operating along different coverage direc-
tions.

Table 1 enumerates the elapsed times and flight distances
resulting from changing the direction of coverage using var-
ious alignment methods. In the first set of experiments, the
UAV simulations were carried out in the absence of wind, in
order to determine the isolated effects of the different align-
ment strategies. The resulting paths exhibited nearly identi-
cal performance, arguably due to the simplicity of the chosen
terrain. On the other hand, these results also suggest that the
direction of coverage had minimal impact on coverage effi-
ciency in practice, at the scale of operations relevant to our
particular UAV platform, and in the absence of strong exter-
nal disturbances.

Next, the same three coverage sessions were repeated after
introducing a constant 7 m/s wind force in a random direction.
These simulations produced similar flight behaviors com-
pared to field trials operating under comparable wind condi-
tions. A separate coverage session was also carried out after
aligning the direction of coverage to be perpendicular with
the wind heading. Looking at the second row of elapsed time
results in Table 1, the presence of wind appeared to have

consistently increased the duration of coverage in all four
sessions.

Interestingly, in the very last flight session, where the cov-
erage direction was aligned to be perpendicular to the wind
direction, the vehicle’s speed oscillated between 20 m/s while
flying along the wind and 10 m/s while flying against the
wind. Although these ground speeds were still within oper-
ational range during this particular session, a stronger wind
force might have destabilized the UAV critically. Also, even
when the strong headwind conditions did not cause the UAV
to stall, it would nevertheless significantly impede the UAV
from executing the sweep lines in a timely manner. Therefore,
this flight session revealed that the wind alignment strategy
may exhibit undesirable properties in practice when oper-
ating under adverse environments, especially during time-
critical scenarios.

As another notable result, looking at the flight distances
for the latter set of experiments, the coverage session using
alignment with obstacle boundaries produced a noticeably
shorter trajectory compared to previous results under no wind
conditions. Upon further inspection of the data however, the
crosswind can be seen in Fig. 8a to have significantly warped
the back-and-forth coverage patterns. In contrast, the flight
trajectory resulting from alignment with the wind direction
in Fig. 8b displayed minimal deviation from the original
set of waypoints generated by the coverage algorithm. This
difference in the quality of coverage can also be observed
from the amount of free space area that was not covered
in each session, which consisted of 8.2 % missed coverage
when using the obstacle edge alignment strategy, compared
to 3.3 % missed coverage when using the wind alignment
strategy.

The results of this experiment suggest that no single align-
ment method dominated in terms of performance improve-
ments, even for a simple one-obstacle terrain. Summarizing
the results, when operating in environments with little or
no environmental disturbances, the choice of alignment ulti-
mately depended on whether the cellular decomposition lead
to a reduction in the total number of turns for the generated
coverage trajectory. On the other hand, it was observed in
practice that aligning the direction of the sweep lines to be
parallel to a strong wind force will not result in a significant
reduction in flight duration and distance, although it does
ensure that the vehicle will follow the designated path more
accurately.

5.4 Exhaustive coverage direction analysis

The previous section demonstrated experimentally that the
different coverage alignment strategies all lead to some
improvements in the quality of the generated trajectory.
A related concern that was not addressed however is
whether these alignment strategies are capable of choosing a

123



Auton Robot (2014) 36:365–381 377

Fig. 8 Simulated coverage paths for a 1 km×0.6 km region at 100 m
altitude with 7 m/s wind. The arrow denotes the wind direction, whereas
the star denotes the start and end of the flight. Our UAV traveled
a 14.46 km in 27 m 13 s under alignment with obstacle edges, and
b 15.19 km in 27 m 39 s under alignment with wind direction

coverage direction that will result in the best coverage qual-
ity. To answer this question, the quality of paths generated
using different coverage directions were compared exhaus-
tively, for a number of distinct environments. This evaluation
was carried out by contrasting the generated waypoint-based
paths directly rather than comparing the executed flight ses-
sions, in order to exclude influences from environmental and
other pragmatic factors.

During this analysis, the quality of coverage was measured
quantitatively by looking at the number of turns in the gen-
erated path. This metric was chosen over the percentage of
repeated coverage even though the latter measured coverage
efficiency, since a path with minimal repeated coverage could
also result in increased missed coverage and thus would not
correspond to a higher quality path. In contrast to the previ-
ous experiment, the total path length was not used to measure
the quality of the trajectory here, since the path length could

be affected by pragmatic factors such as wind, which were
ignored for this analysis.

Figure 9 depicts the coverage quality as a function of cov-
erage direction, for three different environments. The results
for the outdoor environment with one single obstacle depicts
multiple near-optimal valleys, whereas the plots for the other
two environments with multiple obstacles reveal landscapes
that are approximately unimodal. One hypothesis to explain
this discrepancy is that whereas each obstacle contributes
to the quality of the generated path at different orienta-
tion angles, aggregating these individual contributions for
an environment with many obstacles leads to a smoother and
almost unimodal response in terms of coverage quality. This
hypothesis can also be used to explain the contrast between
the oscillatory and potentially unstable quality for the single
obstacle environment, and the smoother response for the two
multi-obstacle terrains.

In addition, although the two alignment strategies pro-
duced comparable results to that of the global optimal ori-
entation, in all three cases the obstacle edge alignment strat-
egy showed slightly better performance compared to the free
space distribution alignment strategy. One explanation is that
the latter variant did not take into account the positions of the
obstacles in the environment, which were influential in deter-
mining the shapes of individual cells.

In summary, aligning the coverage direction to be orthog-
onal to the dominant obstacle edge direction has the potential
to generate trajectories with near-minimal number of turns,
and is thus an effective heuristic for avoiding an exhaustive
search for the globally optimal coverage direction.

5.5 Global versus local optimality

When operating in an unknown environment, the cell traver-
sal ordering can only be chosen using a locally optimal strat-
egy (Choset and Pignon 1997), which is to select the closest
unexplored cell to cover next. In this experiment, the local
cell selection strategy was compared to the globally optimal
cell traversal ordering generated by our coverage algorithm,
for the two environments shown in Fig. 9a, b. In particu-
lar, the same footprint width was used to generate coverage
paths for our globally optimal cell exploration strategy, as
well as for the exhaustive set of locally optimal cell traver-
sals corresponding to using different critical points as starting
locations.

Table 2 indicates that the globally optimal coverage tra-
jectories were about 10 % shorter compared to the average
locally optimal path for both outdoor regions. In fact, for
these two sets of results, the globally optimal solutions were
below three standard deviations away from the average result
using the locally optimal exploration strategy, suggesting that
our coverage approach performs better than the vast majority
of paths generated using a locally optimal strategy.

123



378 Auton Robot (2014) 36:365–381

(a) (b) (c)

0 30 60 90 120 150 180
Orientation of Coverage Direction (deg)

N
um

be
r 

of
 T

ur
ns

(d)

0 30 60 90 120 150 180
Orientation of Coverage Direction (deg)

N
um

be
r 

of
 T

ur
ns

(e)

0 30 60 90 120 150 180
Orientation of Coverage Direction (deg)

N
um

be
r 

of
 T

ur
ns

(f)

Fig. 9 Various obstacle maps: a A 1 km×0.6 km simple outdoor
region with one obstacle, b a 13 km×10 km complex outdoor region
with multiple obstacles, and c a 0.6 km×0.6 km structured office space.
d–f Plots the number of turns in the computed path plotted against cov-

erage direction for these regions: star indicates the globally optimal
result; circle and diamond indicate the angles chosen by the obstacle
edge alignment and free space alignment strategies

Table 2 Total coverage distances at 200 m altitude, comparing global
and local cell-selection strategies

Simple outdoor region Complex outdoor region
(Fig. 9a) (Fig. 9b)

Dist. (optimal) 8.377 km 974.0 km

Avg. dist. (local) 9.109 km 1008 km

Std. dev. (local) 0.2158 km 5.243 km

5.6 UAV field trial

We carried out extensive field evaluations over farmland ter-
rain resulting in a total flight distance of 213.8 km during
numerous coverage sessions. All of the configuration para-
meters used in our simulated coverage sessions were obtained
from real data collected during these field trials.

This study revisits the comparison between the greedy
waypoint controller and the curlicue controller in a field
deployment setting, with a fixed-wing UAV operating under
5–8 m/s wind conditions. We collected eight complete cover-
age runs for this experiment, resulting in a total of 118.9 km
flight distance. Our discussions below focus on two flight
instances among our collected field data set.

Observing the resulting trajectories and flight data in
Fig. 10, the elapsed times and distances both indicate an 85 %
increased penalty for using the curlicue strategy. One of the

main causes for the large performance gap can be seen in the
curlicue path: rather than flying in circular orbits, the strong
wind force persistently pushed the UAV off of its designated
coverage path.

The UAV’s telemetry collected during these runs were
used to estimate the completeness of coverage, by analyzing
the percentage of visual overlap among video frames. The
flight session using the greedy controller resulted in 66.6 %
single coverage, 28.3 % repeated coverage, and 5.1 % missed
coverage, as shown in Fig. 10c, whereas the curlicue session
resulted in 35.1 % single coverage, 64.1 % repeated cover-
age, and 0.8 % missed coverage, as shown in Fig. 10d. The
increased repeated coverage in the latter session was primar-
ily due to the circular orbits generated by the curlicue con-
troller, which represented a significant addition to the overall
path length given the small size of the target environment. In
addition, since our per-cell coverage algorithm reduced the
effective footprint width in order to establish an integer num-
ber of sweep lines per cell, this resulted in a notable amount
of coverage overlap in both field sessions. These deficiencies
are related to a number of pragmatic factors, such as the size
of the coverage environment and the severity of environ-
mental disturbances. The illustrative flight sessions in this
experiment were configured specifically to demonstrate the
potential severity of these practical concerns.

The two presented coverage sessions were also repli-
cated in simulation using a static wind factor computed

123



Auton Robot (2014) 36:365–381 379

Fig. 10 Actual coverage paths from an UAV field trial for a
1 km×0.7 km region at 150 m altitude with 5–8 m/s wind. The arrow
denotes the wind direction, whereas the star denotes the start and end
of the flight. Both directions of coverage were pre-aligned with obstacle
edges. Our UAV traveled a 9.10 km in 12 m 48 s using the greedy path

planner, and b 17.25 km in 23 m 42 s using the curlicue strategy. The
corresponding coverage “heat maps” are shown in (c) and (d), where
bright regions correspond to repeated coverage, and black zones depict
obstacles as well as areas with missed coverage

from field data. During these sessions, the UAV traveled
10.2 km in 16 m 19 s using the greedy path planner, and
19.3 km in 30 m 38 s using the curlicue controller. Com-
pared to the results of the field trial, the slightly increased
distance and duration values can be attributed to a com-
bination of the inaccuracies in the replication of the setup
and of the simulation. More importantly, the performance
gap between the two motion controllers remained at about
87 %, which is quite similar to the results obtained in the
field trials, and thus further corroborates our field deployment
findings.

6 Conclusions

We presented a new path planning algorithm and implemen-
tation for the efficient complete coverage of a known environ-
ment with arbitrary obstacles. This approach guides a mobile
robot through a sequence of areas to be covered, while mini-
mizing the amount of repeated coverage through previously

traveled areas. The solution to the CPP was adapted to the
computation of the cell traversal. Also, the single cell cov-
erage used in the BCD algorithm was modified to eliminate
repeat coverage, by splitting certain cells into two compo-
nents.

Our experiments comprised of over 200 km of visual cov-
erage flights using a fixed-wing aerial vehicle, together with
thousands of kilometers of flight in simulation. Extensive
testing validated the robustness and efficiency of the pro-
posed approach, and also highlighted the effects on the qual-
ity of coverage of different low-level motion planners, of the
direction of coverage, and of environmental factors.

We are currently investigating the effectiveness of alter-
native motion patterns such as sawtooth and spiral shapes
for covering free space regions. We are also continuously
expanding our experimental repertoire for a wider range of
operating conditions. Finally, we are interested in deploying
this solution on-board different types of autonomous robots,
in order to extend this solution to heterogeneous multi-robot
teams (Shkurti et al. 2012).

123



380 Auton Robot (2014) 36:365–381

Acknowledgments We would like to thank both Microsoft Research
and the National Science and Engineering Research Council of Canada
(NSERC) for their generous financial support towards this work. We
also would like to thank Prof. D. Avis for the useful discussions on
graph theory and the CPP.

References

Acar, E. U., Choset, H., Rizzi A. A., Atkar P. N., & Hull D. (2002).
Morse decompositions for coverage tasks. The International Journal
of Robotics Research (IJRR ’02), 21(4), 331–344 (2002).

Acar, E. U., & Choset, H. (2002). Sensor-based coverage of unknown
environments: Incremental construction of morse decompositions.
The International Journal of Robotics Research (IJRR ’02), 21(4),
345–366.

Acar, E. U., Choset, H., Zhang, Y., & Schervish, M. (2003). Path plan-
ning for robotic demining: Robust sensor-based coverage of unstruc-
tured environments and probabilistic methods. The International
Journal of Robotics Research (IJRR ’03), 22, 441–466.

Agarwal, A., Hiot, L., Nghia, N., & Joo, E. (2006). Parallel region
coverage using multiple UAVs. In IEEE Aerospace Conference (p.
8). Big Sky, MT.

Agmon, N., Hazon, N., & Kaminka, G. (2008). The giving tree: Con-
structing trees for efficient offline and online multi-robot coverage.
Annals of Mathematics and Artificial Intelligence, 52, 143–168.

Ahmadzadeh, A., Jadbabaie, A., Kumar, V., & Pappas, G. (2006a).
Multi-UAV cooperative surveillance with spatio-temporal specifica-
tions (pp. 5293–5298). San Diego, CA: Proceedings of the 45th IEEE
Conference on Decision and Control.

Ahmadzadeh, A., Keller, J., Jadbabaie, A., & Kumar, V. (2006b). An
optimization-based approach to time critical cooperative surveil-
lance and coverage with unmanned aerial vehicles. Rio de Janeiro:
International Symposium on Experimental Robotics.

Aviones. (2013). UAV Flight Simulator. Retrieved June 6, 2013 from
http://aviones.sourceforge.net.

Brightwell, G., & Winkler, P. (2004). Note on counting Eulerian circuits.
CoRR cs.CC/0405067.

Butler, Z. (1998). CC R : A complete algorithm for contact-sensor based
coverage of rectilinear environments. Technical Report. CMU-RI-
TR-98-27. Pittsburgh, PA: The Robotics Institute, Carnegie Mellon
University.

Cheng, P., Keller, J., & Kumar, V. (2008). Time-optimal UAV trajectory
planning for 3D urban structure coverage (pp. 2750–2757). Nice:
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’08).

Choset, H. (2000). Coverage of known spaces: The boustrophedon cel-
lular decomposition. Autonomous Robots, 9, 247–253.

Choset, H. (2001). Coverage for robotics—a survey of recent results.
Annals of Mathematics and Artificial Intelligence, 31, 113–126.

Choset, H., & Burdick, J. (1995). Sensor based planning, part ii: Incre-
mental construction of the generalized voronoi graph. In Proceedings
of the IEEE conference on robotics and automation (ICRA ’95) (pp.
1643–1648). Los Alamitos, CA: IEEE Computer Society Press.

Choset, H., & Pignon, P. (1997). Coverage path planning: The boustro-
phedon cellular decomposition. Leuven: Proceedings of the Interna-
tional Conference on Field and Service Robotics.

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W.,
Kavraki, L. E., et al. (2005). Principles of robot motion: Theory,
algorithms, and implementations. Boston: MIT Press.

Cortes, J., Martinez, S., Karatas, T., & Bullo, F. (2004). Coverage control
for mobile sensing networks. IEEE Transactions on Robotics, 20(2),
243–255.

DasGupta, B., Hespanha, J., Riehl, J., & Sontag, E. (2006). Honey-
pot constrained searching with local sensory information. Nonlinear
Analysis, 65(9), 1773–1793.

Easton, K., & Burdick, J. (2005). A coverage algorithm for multi-robot
boundary inspection (pp. 727–734). Barcelona: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA
’05).

Edmonds, J., & Johnson, E. L. (1973). Matching, Euler tours and the
Chinese postman. Mathematical Programming, 5, 88–124.

Fazli, P., Davoodi, A., Pasquier, P., & Mackworth, A. (2010). Com-
plete and robust cooperative robot area coverage with limited range
(pp. 5577–5582). Taipei: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS ’10).

Fomenko, A., & Kunii, T. L. (1997). Topological modeling for visual-
ization. Tokyo: Springer-Verlag.

Forman, R. (1998). Morse theory for cell complexes. Advances in Math-
ematics, 134, 90145.

Furukawa, T., Bourgault, F., Lavis, B., & Durrant-Whyte, H. (2006).
Recursive Bayesian search-and-tracking using coordinated UAVs
for lost targets. Orlando, FL: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA ’06).

Gabriely, Y., & Rimon, E. (2001). Spanning-tree based coverage of
continuous areas by a mobile robot. Seoul: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA ’01).

Gabriely, Y., & Rimon, E. (2002). Spiral-stc: An on-line coverage algo-
rithm of grid environments by a mobile robot (pp. 954–960). Wash-
ington, D.C: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA ’02).

Gaudiano, P., Shargel, B., Bonabeau, E., & Clough, B. T. (2003). Swarm
intelligence: A new C2 paradigm with an application to control
of swarms of UAVs. Copenhagen: ICCRTS Command and Control
Symposium.

Girdhar, Y., Xu, A., Dey, B. B., Meghjani, M., Shkurti, F., Rekleitis, I.,
& Dudek, G. (2011). MARE: Marine Autonomous Robotic Explorer
(pp. 5048–5053). Algarve: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS ’11).

Guan, M.-K. (1962). Graphic programming using odd or even points.
Chinese Mathematics, 1(3), 273–277.

Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile
sensor network deployment using potential fields: A distributed,
scalable solution to the area coverage problem (pp. 299–308).
Fukuoka: Proceedings of the International Symposium on Distrib-
uted Autonomous Robotic Systems.

Huang, W. (2001). Optimal line-sweep-based decompositions for cov-
erage algorithms (pp. 27–32). Seoul: Proceedings the IEEE Interna-
tional Conference on Robotics and Automation (ICRA ’01).

Jimenez, P., Shirinzadeh, B., Nicholson, A., & Alici, G. (2007). Opti-
mal area covering using genetic algorithms (pp. 1–5). Zurich: Pro-
ceedings of the IEEE/ASME International Conference on Advanced
Intelligent, Mechatronics.

Kang, J. W., Kim, S. J., Chung, M. J., Myung, H., Park, J. H., & Bang, S.
W. (2007). Path planning for complete and efficient coverage oper-
ation of mobile robots (pp. 2126–2131). Harbin: Proceedings of the
IEEE International Conference on Mechatronics and Automation
(ICMA ’07).

Lumelsky, V. J., Mukhopadhyay, S., & Sun, K. (1990). Dynamic path
planning in sensor-based terrain acquisition. IEEE Transactions on
Robotics and Automation, 6(4), 462–472.

Mannadiar, R., & Rekleitis, I. (2010). Optimal coverage of a known
arbitrary environment (pp. 5525–5530). Anchorage: Proceedings of
IEEE International Conference on Robotics and Automation (ICRA
’10).

Martinez, S., Cortes, J., & Bullo, F. (2007). Motion coordination with
distributed information. IEEE Control Systems Magazine, 27(4), 75–
88.

Maza, I., & Ollero, A. (2007). Multiple UAV cooperative searching
operation using polygon area decomposition and efficient coverage
algorithms. In Distributed Autonomous Robotic Systems 6 (pp. 221–
230). Japan: Springer.

123

http://aviones.sourceforge.net


Auton Robot (2014) 36:365–381 381

Meger, D., Rekleitis, I., & Dudek, G. (2008). Heuristic search planning
to reduce exploration uncertainty (pp. 3382–3399). Nice: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS ’08).

Paull, L., Saeedi, S., Li, H., & Myers, V. (2010). An information gain
based adaptive path planning method for an autonomous underwater
vehicle using sidescan sonar (pp. 835–840). Toronto, ON: Proceed-
ings of the IEEE International Conference on Automation Science
and Engineering (CASE ’10).

Rekleitis, I. M., Dudek, G., & Milios, E. (2001). Multi-robot collabo-
ration for robust exploration. Annals of Mathematics and Artificial
Intelligence, 31(1–4), 7–40.

Rekleitis, I. M., New, A. P., Rankin, E. S., & Choset, H. (2008). Efficient
multi-robot coverage: An algorithmic approach. Annals of Mathe-
matics and Artificial Intelligence, 52(2–4), 109–142.

Schwager, M., Slotine, J. J., & Rus, D. (2009). Unifying geometric,
probabilistic, and potential field approaches to multi-robot coverage
control. Lucerne: Proceedings of the IEEE International Symposium
on Robotics Research (ISRR ’09) (2009).

Shkurti, F., Xu, A., Meghjani, M., Higuera, J. C. G., Girdhar, Y.,
Giguère, P., Dey, B. B., Li, J., Kalmbach, A., Prahacs, C., Turgeon,
K., Rekleitis, I., & Dudek, G. (2012). Multi-domain monitoring of
marine environments using a heterogeneous robot team. Algarve:
Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS ’12).

Weiss-Cohen, M., Sirotin, I., & Rave, E. (2008). Lawn mowing system
for known areas (pp. 539–544). Vienna: Proceedings of the Inter-
national Conference on Computational Intelligence for Modelling
Control and Automation.

Xu, A., & Dudek, G. (2010). A vision-based boundary following frame-
work for aerial vehicles (pp. 81–86). Algarve: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS ’10).

Xu, A., Viriyasuthee, C., & Rekleitis, I. (2011). Optimal complete ter-
rain coverage using an unmanned aerial vehicle (pp. 2513–2519).
Anchorage: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA ’11).

Yao, Z. (2006). Finding efficient robot path for the complete coverage
of a known space (pp. 3369–3374). Orlando, FL: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA
’06).

Zheng, X., Jain, S., Koenig, S., & Kempe, D. (2005). Multi-robot forest
coverage (pp. 3852–3857). Edmonton, AB: Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS
’05).

Anqi Xu is a Ph.D. student
studying at McGill University’s
School of Computer Science
under the supervision of Profes-
sor Gregory Dudek. He is a mem-
ber of the Mobile Robotics Lab-
oratory at the Centre for Intelli-
gent Machines at McGill Univer-
sity. He obtained a B.Eng. degree
in Computer Engineering and a
minor in Software Engineering
from McGill University in 2008
and graduated with great distinc-
tion. His primary research inter-
ests include Human–Robot Inter-

action, Computer Vision, and robot programming methodologies.

Chatavut Viriyasuthee is a
M.Sc. student studying at McGill
University’s School of Com-
puter Science under guidance
of Professor Gregory Dudek.
He is a member of the Mobile
Robotics Laboratory, at the Cen-
tre for Intelligent Machines. He
received his bachelor’s degree
in Computer Engineering from
Chulalongkorn University, Thai-
land where he spent some time
developing intelligent machines
and participating in many robot
competitions. His research inter-

ests span Robotics, Computer Vision, and certain topics in machine
learning especially graphical models and reinforcement learning.

Ioannis Rekleitis is currently an
Adjunct Professor at the School
of Computer Science, McGill
University. Between 2004 and
2007 he was a visiting fellow
at the Canadian Space Agency.
Between 2002 and 2003, he was
a Postdoctoral Fellow at the
Carnegie Mellon University in
the Sensor Based Planning Lab
with Professor Howie Choset.
His research has focused on
mobile robotics and in particular
in the area of cooperating intel-
ligent agents with application to

multi-robot cooperative localization, mapping, exploration and cover-
age. He has worked with underwater, terrestrial, aerial, and space robots.
His interests extend to computer vision and sensor networks. Ioannis
Rekleitis has published more than 50 journals and conference papers.
He has an H-Index of 23 (using Google Scholar). He has served as Pro-
gram Chair, Associate Editor, and Program Committee member in sev-
eral journal and conferences. He is the Principal Investigator for a five
year Natural Sciences and Engineering Research Council of Canada
(NSERC) discovery grant and a Co-PI on Microsoft Research and
NSERC grants. Ioannis Rekleitis was granted his Ph.D. from the School
of Computer Science, McGill University, Montreal, Quebec, Canada in
2002 under the supervision of Professors Gregory Dudek and Evan-
gelos Milios. Thesis title: “Cooperative Localization and Multi-Robot
Exploration”. He finished his M.Sc. in McGill University in the field of
Computer Vision in 1995. He was granted his B.Sc. in 1991 from the
Department of Informatics, University of Athens, Greece.

123


	Efficient complete coverage of a known arbitrary environment with applications to aerial operations
	Abstract 
	1 Introduction
	2 Background
	2.1 Coverage
	2.2 Graph theory

	3 Efficient complete coverage algorithm
	3.1 Boustrophedon cellular decomposition
	3.2 Construction of the Eulerian circuit
	3.3 Per-cell coverage pattern
	3.4 Analysis of completeness
	3.5 Analysis of efficiency
	3.5.1 Efficiency of the cell traversal ordering
	3.5.2 Efficiency of per-cell coverage pattern
	3.5.3 Asymptotic coverage optimality


	4 Aerial coverage
	4.1 Direction of coverage
	4.2 Non-holonomic vehicle control

	5 Experimental validation
	5.1 Hardware platform
	5.2 Large scale simulation
	5.3 Alignment strategies for coverage direction
	5.4 Exhaustive coverage direction analysis
	5.5 Global versus local optimality
	5.6 UAV field trial

	6 Conclusions
	Acknowledgments
	References


